Journal of Chemical Ecology

, Volume 32, Issue 6, pp 1149–1163 | Cite as

Salivary Proteins as a Defense Against Dietary Tannins

Review Article

Abstract

Tannins, a diverse group of water-soluble phenolics with high affinity to proteins, are widely distributed in various parts of plants, and have negative effects in herbivores after ingestion. Some mammalian species are thought to counteract tannins by secreting tannin-binding salivary proteins (TBSPs). Several types of TBSPs are found in the saliva of laboratory animals, livestock, and wildlife. Among them, proline-rich proteins (PRPs) and histatins are effective precipitators of tannins. It is widely accepted that, at the least, PRPs act as a first line of defense against tannins. Many observations support this idea: in vitro affinity of PRPs to tannins is far higher than that of other proteins such as bovine serum albumin; complexes formed between PRPs and tannins are stable even under the conditions in the stomach and intestine; and PRP production is induced by ingesting tannins. It is believed that species that usually ingest tannins as part of their natural diets produce high levels of PRPs, whereas species not exposed to tannins produce little or no PRPs. This hypothesis is generally supported, although studies on TBSPs in wildlife are limited. This work stresses the importance of gathering basic information on such items as the characteristics of unidentified TBSPs, and seasonal and geographical variations in PRP production.

Keywords

Affinity to tannins Defense mechanisms against tannins Feeding niche Histatins Nitrogen costs Proline-rich proteins (PRPs) 

References

  1. Ann, D. K. and Carlson, D. M. 1985. The structure of organization of a proline-rich protein gene of a mouse multigene family. J. Biol. Chem. 260:15863–15872.PubMedGoogle Scholar
  2. Ann, D. K., Gadbois, D., and Carlson, D. M. 1987. Structure, organization, and regulation of a hamster proline-rich protein gene—a multigene family. J. Biol. Chem. 262:3958–3963.PubMedGoogle Scholar
  3. Asquith, T. N. and Butler, L. G. 1985. Use of dye-labeled protein as spectrophotometric assay for protein precipitants such as tannin. J. Chem. Ecol. 11:1535–1544.CrossRefGoogle Scholar
  4. Asquith, T., Mehansho, H., Rogler, J., Butler, L., and Carlson, D. M. 1985. Induction of proline-rich protein-biosynthesis in salivary-glands by tannins. FASEB J. 44:1097.Google Scholar
  5. Asquith, T. N., Uhlig, J., Mehansho, H., Putman, L., Carlson, D. M., and Butler, L. 1987. Binding of condensed tannins to salivary proline-rich glycoproteins—the role of carbohydrate. J. Agric. Food. Chem. 35:331–334.CrossRefGoogle Scholar
  6. Austin, P. J., Suchar, L. A., Robbins, C. T., and Hagerman, A. E. 1989. Tannin-binding proteins in saliva of deer and their absence in saliva of sheep and cattle. J. Chem. Ecol. 15:1335–1347.CrossRefGoogle Scholar
  7. Azen, E. A., Carlson, D. M., Clements, S., Lalley, P. A., and Vanin, E. 1984. Salivary proline-rich protein genes on chromosomes-8 of mouse. Science 226:967–969.PubMedCrossRefGoogle Scholar
  8. Bacon, J. R. and Rhodes, M. J. C. 2000. Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it. J. Agric. Food. Chem. 48:838–843.CrossRefPubMedGoogle Scholar
  9. Bennick, A. 2002. Interaction of plant polyphenols with salivary proteins. Crit. Rev. Oral Biol. Med. 13:184–196.PubMedCrossRefGoogle Scholar
  10. Bernays, E. A., Driver, G. C., and Bilgener, M. 1989. Herbivores and plant tannins. Adv. Ecol. Res. 19:263–302.CrossRefGoogle Scholar
  11. Blytt, H. J., Guscar, T. K., and Butler, L. G. 1988. Antinutritional effects and ecological significance of dietary condensed tannins may not be due to binding and inhibiting digestive enzymes. J. Chem. Ecol. 14:1455–1465.CrossRefGoogle Scholar
  12. Burritt, E. A. and Provenza, F. D. 2000. Role of toxins in intake of varied diets by sheep. J. Chem. Ecol. 26:1991–2005.CrossRefGoogle Scholar
  13. Carlson, D. M. 1993. Salivary proline-rich proteins—biochemistry, molecular biology, and regulation of expression. Crit. Rev. Oral Biol. Med. 4:495–502.PubMedGoogle Scholar
  14. Chan, M. and Bennick, A. 2001. Proteolytic processing of a human salivary proline-rich protein precursor by proprotein convertases. Eur. J. Biochem. 268:3423–3431.CrossRefPubMedGoogle Scholar
  15. Chung-MacCoubrey, A. L., Hagerman, A. E., and Kirkpatrick, R. L. 1997. Effect of tannins on digestion and detoxification activity in gray squirrels (Sciurus carolinensis). Physiol. Zool. 70:270–277.PubMedGoogle Scholar
  16. Clausen, T. P., Provenza, F. D., Burritt, E. A., Reichardt, P. B., and Bryant, J. P. 1990. Ecological implications of condensed tannin structure: a case study. J. Chem. Ecol. 16:2381–2392.CrossRefGoogle Scholar
  17. Clauss, M., Lason, K., Gehrke, J., Lechner-Doll, M., Fickel, J., Grune, T., and Streich, W. J. 2003. Captive roe deer (Capreolus capreolus) select for low amounts of tannic acid but not quebracho: fluctuation of preferences and potential benefits. Comp. Biochem. Physiol. B 136:369–382.CrossRefPubMedGoogle Scholar
  18. Clauss, M., Gehrke, J., Hatt, J.-M., Dierenfeld, E. S., Flach, E. J., Hermes, R., Castell, J., Streich, W. J., and Fickel, J. 2005. Tannin-binding salivary proteins in three captive rhinoceros species. Comp. Biochem. Physiol. A 140:67–72.CrossRefGoogle Scholar
  19. Clements, S., Mehansho, H., and Carlson, D. M. 1985. Novel multigene families encoding highly repetitive peptide sequences—sequence analyses of rat and mouse proline-rich protein cDNAs. J. Biol. Chem. 260:3471–3477.Google Scholar
  20. Cooper, S. M. and Owen-Smith, N. 1985. Condensed tannins deter feeding by browsing ruminants in a South African savanna. Oecologia (Berlin) 67:142–146.CrossRefGoogle Scholar
  21. Dearing, M. D. 1997. The manipulation of plant toxins by a food-hoarding herbivore, Ochotona princeps. Ecology 78:774–781.CrossRefGoogle Scholar
  22. Dearing, M. D. and Cork, S. 1999. Role of detoxification of plant secondary compounds on diet breadth in a mammalian herbivore, Trichosurus vulpecula. J. Chem. Ecol. 25:1205–1220.CrossRefGoogle Scholar
  23. Dearing, M. D., Foley, W. J., and McLean, S. 2005. The influence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates. Annu. Rev. Ecol. Evol. Syst. 36:169–189.CrossRefGoogle Scholar
  24. Dietz, B. A., Hagerman, A. E., and Barrett, G. W. 1994. Role of condensed tannin on salivary tannin-binding proteins, bioenergetics, and nitrogen digestibility in Microtus pennsylvanicus. J. Mammal. 75:880–889.CrossRefGoogle Scholar
  25. Ferreira, F. D., Robinson, R., Hand, A. R., and Bennick, A. 1992. Differential expression of proline-rich proteins in rabbit salivary glands. J. Histochem. Cytochem. 40:1393–1404.PubMedGoogle Scholar
  26. Fickel, J., Goritz, F., Joest, B. A., Hildebrandt, T., Hofmann, R. R., and Breves, G. 1998. Analysis of parotid and mixed saliva in roe deer (Capreolus capreolus L.). J. Comp. Physiol. B 168:257–264.CrossRefPubMedGoogle Scholar
  27. Foley, W. J. and Moore, B. D. 2005. Plant secondary metabolites and vertebrate herbivores—from physiological regulation to ecosystem function. Curr. Opin. Plant Biol. 8:430–435.CrossRefPubMedGoogle Scholar
  28. Fowler, M. E. and Richards, W. P. C. 1965. Acorn poisoning in a cow and a sheep. J. Am. Vet. Med. 147:1215–1220.Google Scholar
  29. Gehrke, J. 2001. Investigations of tannin-binding salivary proteins of roe deer and other ruminants. PhD dissertation, University of Potsdam, Potsdam (in German with English summary).Google Scholar
  30. Glendinning, J. I. 1992. Effect of salivary proline-rich proteins on ingestive responses to tannic acid in mice. Chem. Senses 17:1–12.CrossRefGoogle Scholar
  31. Hagerman, A. E. and Butler, L. G. 1981. The specificity of proanthocyanidin–protein interactions. J. Biol. Chem. 256:4494–4497.PubMedGoogle Scholar
  32. Hagerman, A. E. and Robbins, C. T. 1993. Specificity of tannin-binding salivary proteins relative to diet selection by mammals. Can. J. Zool. 71:628–633.CrossRefGoogle Scholar
  33. Haghighat, M., Moetamed, A., Vaseghi, T., and Aminlari, M. 1996. Isoprenaline induces biosynthesis of proline-rich proteins in the salivary glands of rat but not in sheep. Comp. Biochem. Physiol. C 115:165–168.PubMedGoogle Scholar
  34. Isemura, S. 2003. Salivary proline-rich proteins: protein structure, gene structure, and function. Curr. Top. Biochem. Res. 5:141–147.Google Scholar
  35. Jansman, A. J. M., Frohlich, A. A., and Marquardt, R. R. 1994. Production of proline-rich proteins by the parotid glands of rats is enhanced by feeding diets containing tannins from Faba beans (Vicia faba L). J. Nutr. 124:249–258.PubMedGoogle Scholar
  36. Juntheikki, M.-R. 1996. Comparison of tannin-binding proteins in saliva of Scandinavian and North American moose (Alces alces). Biochem. Syst. Ecol. 24:595–601.CrossRefGoogle Scholar
  37. Juntheikki, M.-R., Julkunen-Tiitto, R., and Hagerman, A. E. 1996. Salivary tannin-binding proteins in root vole (Microtus oeconomus Pallas). Biochem. Syst. Ecol. 24:25–35.CrossRefGoogle Scholar
  38. Kauffman, D. L. and Keller, P. J. 1979. The basic proline-rich proteins from a single subject. Arch. Oral Biol. 24:249–256.CrossRefPubMedGoogle Scholar
  39. Kim, H. S. and Maeda, N. 1986. Structures of two HAEIII-type genes in the human salivary proline-rich protein multigene family. J. Biol. Chem. 261:6712–6718.PubMedGoogle Scholar
  40. Lu, Y. and Bennick, A. 1998. Interaction of tannin with human salivary proline-rich proteins. Arch. Oral Biol. 43:717–728.CrossRefPubMedGoogle Scholar
  41. Lyons, K. M., Azen, E. A., Goodman, P. A., and Smithies, O. 1988. Many protein products from a few loci: assignment of human salivary proline-rich proteins to specific loci. Genetics 120:255–265.PubMedGoogle Scholar
  42. Maeda, N. 1985. Inheritance of the human salivary proline-rich proteins—a reinterpretation in terms of 6 loci forming 2 subfamilies. Biochem. Genet. 23:455–464.CrossRefPubMedGoogle Scholar
  43. Maeda, N., Kim, H. S., Azen, E. A., and Smithies, O. 1985. Differential RNA splicing and post-translational cleavages in the human salivary proline-rich protein gene system. J. Biol. Chem. 260:1123–1130.Google Scholar
  44. Makkar, H. P. S. and Becker, K. 1998. Adaptation of cattle to tannins: role of proline-rich proteins in oak-fed cattle. Anim. Sci. 67:277–281.CrossRefGoogle Scholar
  45. Mandel, I. D., Thompson, R. H. J., and Ellison, S. A. 1965. Studies on the mucoproteins of human parotid saliva. Arch. Oral Biol. 10:499–507.CrossRefPubMedGoogle Scholar
  46. McArthur, C., Hagerman, A., and Robbins, C. T. 1991. Physiological strategies of mammalian herbivores against plant defenses, pp. 103–114, in R. T. Palo and C. T. Robbins (eds.). Plant Defences Against Mammalian Herbivory. CRC Press, Florida.Google Scholar
  47. McArthur, C., Sanson, G. D., and Beal, A. M. 1995. Salivary proline-rich proteins in mammals—roles in oral homeostasis and counteracting dietary tannin. J. Chem. Ecol. 21:663–691.CrossRefGoogle Scholar
  48. Mehansho, H. and Carlson, D. M. 1983. Induction of protein and glycoprotein synthesis in rat submandibular glands by isoproterenol. J. Biol. Chem. 258:6616–6620.PubMedGoogle Scholar
  49. Mehansho, H., Hagerman, A., Clements, S., Butler, L., Rogler, J., and Carlson, D. M. 1983. Modulation of proline-rich protein biosynthesis in rat parotid glands by sorghums with high tannin levels. Proc. Natl. Acad. Sci. USA 80:3948–3952.PubMedCrossRefGoogle Scholar
  50. Mehansho, H., Clements, S., Sheares, B. T., Smith, S., and Carlson, D. M. 1985. Induction of proline-rich glycoprotein synthesis in mouse salivary glands by isoproterenol and by tannins. J. Biol. Chem. 260:4418–4423.PubMedGoogle Scholar
  51. Mehansho, H., Ann, D. K., Butler, L. G., Rogler, J., and Carlson, D. M. 1987a. Induction of proline-rich proteins in hamster salivary glands by isoproterenol treatment and an unusual growth inhibition by tannins. J. Biol. Chem. 262:12344–12350.PubMedGoogle Scholar
  52. Mehansho, H., Butler, L. G., and Carlson, D. M. 1987b. Dietary tannins and salivary proline-rich proteins—interactions, induction, and defense mechanisms. Annu. Rev. Nutr. 7:423–440.CrossRefPubMedGoogle Scholar
  53. Mitaru, B. N., Reichert, R. D., and Blair, R. 1984. The binding of dietary protein by sorghum tannins in the digestive tract of pigs. J. Nutr. 114:1787–1796.PubMedGoogle Scholar
  54. Mole, S., Butler, L. G., and Iason, G. 1990. Defense against dietary tannin in herbivores—a survey for proline-rich salivary proteins in mammals. Biochem. Syst. Ecol. 18:287–293.CrossRefGoogle Scholar
  55. Mole, S., Rogler, J. C., and Butler, L. G. 1993. Growth reduction by dietary tannins—different effects due to different tannins. Biochem. Syst. Ecol. 21:667–677.CrossRefGoogle Scholar
  56. Muenzer, J., Bildstein, C., Gleason, M., and Carlson, D. M. 1979. Properties of proline-rich proteins from parotid glands of isoproterenol-treated rats. J. Biol. Chem. 254:5629–5634.PubMedGoogle Scholar
  57. Murray, N. J. and Williamson, M. P. 1994. Conformational study of a salivary proline-rich protein repeat sequence. Eur. J. Biochem. 219:915–921.CrossRefPubMedGoogle Scholar
  58. Niho, N., Shibutani, M., Tamura, T., Toyoda, K., Uneyama, C., Takahashi, N., and Hirose, M. 2001. Subchronic toxicity study of gallic acid by oral administration in F344 rats. Food Chem. Toxicol. 39:1063–1070.CrossRefPubMedGoogle Scholar
  59. Oppenheim, F. G., Hay, D. I., and Franzblau, C. 1971. Proline-rich proteins from human parotid saliva. I. Isolation and partial characterization. Biochemistry. 10:4233–4238.CrossRefPubMedGoogle Scholar
  60. Oppenheim, F. G., Kousvelari, E. E., and Troxler, R. F. 1979. Immunological cross-reactivity and sequence homology between salivary proline-rich proteins in human and macaque monkey (Macaca fascicularis) parotid saliva. Arch. Oral Biol. 24:595–599.CrossRefPubMedGoogle Scholar
  61. Oppenheim, F. G., Hay, D. I., Smith, D. J., Offner, G. D., and Troxler, R. F. 1987. Molecular basis of salivary proline-rich protein and peptide synthesis—cell-free translations and processing of human and macaque statherin messenger-RNAs and partial amino-acid-sequence of their signal peptides. J. Dent. Res. 66:462–466.PubMedGoogle Scholar
  62. Robbins, C. T., Hanley, T. A., Hagerman, A. E., Hjeljord, O., Baker, D. L., Schwartz, C. C., and Mautz, W. W. 1987. Role of tannins in defending plants against ruminants: reduction in protein availability. Ecology 68:98–107.CrossRefGoogle Scholar
  63. Robbins, C. T., Hagerman, A. E., Austin, P. J., McArthur, C., and Hanley, T. A. 1991. Variation in mammalian physiological responses to a condensed tannin and its ecological implications. J. Mammal. 72:480–486.CrossRefGoogle Scholar
  64. Sabatini, L. M., Warner, T. F., Saitoh, E., and Azen, E. A. 1989. Tissue distribution of RNAs for cystatins, histatins, statherin, and proline-rich salivary proteins in human and macaques. J. Dent. Res. 68:1138–1145.PubMedGoogle Scholar
  65. Schmidt-Nielsen, K. 1997. Animal Physiology. Cambridge University Press, Cambridge.Google Scholar
  66. Schulz, G. E. and Schirmer, R. H. 1979. Principles of Protein Structure. Springer, Berlin.Google Scholar
  67. Shimada, T. 2001. Hoarding behaviors of two wood mouse species: different preference for acorns of two Fagaceae species. Ecol. Res. 16:127–133.CrossRefGoogle Scholar
  68. Shimada, T. and Saitoh, T. 2003. Negative effects of acorns on the wood mouse Apodemus speciosus. Pop. Ecol. 45:7–17.Google Scholar
  69. Shimada, T., Saitoh, T., and Matsui, T. 2004. Does acclimation reduce the negative effects of acorn tannins in the wood mouse Apodemus speciosus? Acta Theriol. 49:203–214.Google Scholar
  70. Shimada, T., Saitoh, T., Sasaki, E., Nishitani, Y., and Osawa, R. 2006. The role of tannin-binding salivary proteins and tannase-producing bacteria in the acclimation of the japanese wood mouse to accorn tannins. J. Chem. Ecol. (in press).Google Scholar
  71. Skopec, M. M., Hagerman, A. E., and Karasov, W. H. 2004. Do salivary proline-rich proteins counteract dietary hydrolyzable tannin in laboratory rats? J. Chem. Ecol. 30:1679–1692.CrossRefPubMedGoogle Scholar
  72. Sowell, B. F., Koerth, B. H., and Bryant, F. C. 1985. Seasonal nutrient estimates of mule deer diets in the Texas Panhandle. J. Range Manage. 38:163–167.CrossRefGoogle Scholar
  73. Sugiyama, K. and Ogata, K. 1993. High performance liquid chromatographic determination of histatins in human saliva. J. Chromatogr. 619:306–309.PubMedCrossRefGoogle Scholar
  74. Takemoto, H. 2003. Phytochemical determination for leaf food choice by wild chimpanzees in Guinea, Bossou. J. Chem. Ecol. 29:2551–2573.CrossRefPubMedGoogle Scholar
  75. Tatsukawa, K. and Murakami, O. 1976. On the food utilization of the Japanese wood mouse Apodemus speciosus (Mammalia: Muridae). Physiol. Ecol. Jpn. 17:133–144.Google Scholar
  76. Vaithiyanathan, S., Mishra, J. P., Sheikh, Q., and Kumar, R. 2001. Salivary gland tannins binding proteins of sheep and goat. Ind. J. Anim. Sci. 71:1131–1134.Google Scholar
  77. Waterman, P. G. and Mole, S. 1994. Analysis of Phenolic Plant Metabolites. Blackwell, Oxford.Google Scholar
  78. Yan, Q. Y. and Bennick, A. 1995. Identification of histatins as tannin-binding proteins in human saliva. Biochem. J. 311:341–347.PubMedGoogle Scholar
  79. Ziemer, M. A., Swain, W. F., Rutter, W. J., Clements, S., Ann, D. K., and Carlson, D. M. 1984. Nucleotide-sequence analysis of a proline-rich protein cDNA and peptide homologies of rat and human proline-rich proteins. J. Biol. Chem. 259:475–480.PubMedGoogle Scholar
  80. Zucker, W. V. 1983. Tannins: does structure determine function? An ecological perspective. Am. Nat. 121:335–365.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Kansai Research CenterForestry and Forest Products Research InstituteMomoyamaJapan

Personalised recommendations