Skip to main content
Log in

Analysis of the Volatiles Emitted by Whole Flowers and Isolated Flower Organs of the Carob Tree Using HS-SPME-GC/MS

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The volatiles emitted by fresh whole flowers and isolated flower organs of male, female, and hermaphrodite carob trees (Ceratonia siliqua L.; Leguminosae) were analyzed by headspace solid-phase microextraction followed by capillary gas chromatography and mass spectrometry. The headspace of carob flowers is mainly constituted of high amounts of monoterpenes and sesquiterpenes, and more than 25 compounds were identified. The gender and cultivar affected both the qualitative profile and the relative abundances of the volatiles of whole flowers and isolated floral organs. Linalool and its derivatives (cis-linalool furan oxide, 2,2,6-trimethyl-3-keto-6-vinyltetrahydropyran, cis-linalool pyran oxide, and trans-linalool furan oxide), α-pinene, and α-farnesene were the dominant volatiles. Female flowers had a higher diversity of volatile compounds than males and hermaphrodites, but a lower abundance of the major ones. Similarly, the floral scent of female flowers of cv. Mulata had a higher content of volatiles but a lower abundance of the major ones, when compared to cv. Galhosa. In each of the three gender types of flowers, the nectary disks seemed to be the major source of volatiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams, R. P. 2001. Identification of essential oil components by gas chromatography/quadrupole mass spectrometry. Allured Pub. Cor., USA.

  • Arista, M., Ortiz, P., and Talavera, S. 1999. Apical pattern of fruit production in the racemes of Ceratonia siliqua (Leguminosae: Caesalpinioideae): role of pollinators. Am. J. Bot. 86:1708–1716.

    Article  PubMed  Google Scholar 

  • Arroyo, J. 1988. Atributos florales y fenologia de la floración en matorrales del Sur de Espaňa. Lagascalia 15:43–48.

    Google Scholar 

  • Ashman, T.-L. 1994. Reproductive allocation in hermaphrodite and female plants of Sidalcea oregana ssp. spicata (Malvaceae) using four currencies. Am. J. Bot. 81:433–438.

    Article  Google Scholar 

  • Ashman, T.-L. 2000. Pollinator selectivity and its implications for the evolution of dioecy and sexual dimorphism. Ecology 81:2577–2591.

    Article  Google Scholar 

  • Ashman, T.-L. and Diefenderfer, C. 2001. Sex ratio represents a unique context for selection on attractive traits: consequences for the evolution of sexual dimorphism. Am. Nat. 157:334–347.

    Article  CAS  PubMed  Google Scholar 

  • Ashman, T.-L., Shivitz, S., and Swetz, J. 2000. Understanding the basis of pollinator selectivity in sexually dimorphic Fragaria virginiana. Oikos 90:347–356.

    Article  Google Scholar 

  • Ashman, T.-L., Bradburn, M., Cole, D., Blaney, B., and Raguso R. 2005. The scent of a male: the role of floral volatiles in pollination of a gender dimorphic plant. Ecology 86:2099–2105.

    Article  Google Scholar 

  • Azuma, H., Toyota, M., and Asakawa, Y. 2001. Intraspecific variation of floral scent chemistry in Magnolia kobus DC. (Magnoliaceae). J. Plant Res. 114:411–422.

    Article  Google Scholar 

  • Azuma, H., Rico-Gray, V., Garcia-Franco, J. G., Toyota, M., Asakawa, Y., and Thien L. B. 2004. Close relationship between Mexican and Chinese Magnolia (Subtropical disjunct of Magnoliaceae) inferred from molecular and floral scent analysis. Acta Phytotaxon. 55:167–180.

    Google Scholar 

  • Barkman, T. J., Beaman, J. H., and Gage, D. A. 1997. Floral fragrance variation in Cypripedium: implication for evolutionary and ecological studies. Phytochemistry 44:875–882.

    Article  CAS  Google Scholar 

  • Barták, P., Bednar, P., Cap, L., Ondrakova, L., and Stransky., Z. 2003. SPME—a valuable tool for investigation of flower scent. J. Sep. Sci. 26:715–721.

    Article  CAS  Google Scholar 

  • Batlle, I. and Tous, J. 1997. Carob tree. Ceratonia siliqua L. Promoting the conservation and use of under-utilised and neglected crops. Plant Genetic Resource Institute, Gatersleben/International, Rome.

  • Bergström, G., Dobson, H. E. M., and Groth, I. 1995. Spatial fragrance patterns within the flowers of Ranunculus acris (Ranunculaceae). Plant Syst. Evol. 195:221–242.

    Article  Google Scholar 

  • Bosch, J., Garcia del Pino, F., Ramoneda, J., and Retana, J. 1996. Fruiting phenology and fruit-set of carob, Ceratonia siliqua L. (Caesalpiniaceae). Isr. J. Plant Sci. 44:359–368.

    Google Scholar 

  • Charlesworth, D. 1999. Theories on the evolution of dioecy, pp. 33–60, in M. A. Geber, T. E. Dawson, and L. F. Delph (eds.). Gender and Sexual Dimorphism in Flowering Plants. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Custódio, L. 2005. New Insight on Carob Floral Biology. PhD Dissertation. Universidade do Algarve, Portugal.

  • Custódio, L., Nogueira, J. M. F., and Romano, A. 2004. Sex and developmental stage of carob flowers affects composition of volatiles. J. Hortic. Sci. Biotechnol. 75:689–692.

    Google Scholar 

  • Dobson, H. E. M. 1994. Floral volatiles in insect biology, pp. 47–81, in E. Bernays (ed.). Insect–Plant Interaction, Vol. 5. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Dobson, H. E. M. and Bergström, G. 2000. The ecology and evolution of pollen odors. Plant Syst. Evol. 222:63–87.

    Article  CAS  Google Scholar 

  • Dobson, H. E. M., Bergström, G., and Groth, I. 1990. Differences in fragrance chemistry between flower parts o Rosa rugosa Thunb. (Rosaceae). Isr. J. Bot. 39:143–156.

    CAS  Google Scholar 

  • Dobson, H. E. M., Groth, I., and Bergström, G. 1996. Pollen advertisement: chemical contrasts between whole-flower and pollen odors. Am. J. Bot. 83:877–885.

    Article  CAS  Google Scholar 

  • Dötterl, S. and Jürgens, A. 2005. Spatial fragrance patterns in flowers of Silene latifolia: lilac compounds as olfactory nectar guides? Plant Syst. Evol. 255:99–109.

    Article  CAS  Google Scholar 

  • Dudareva, N. and Pichersky, E. 2000. Biochemical and molecular genetic aspects of floral scents. Plant Physiol. 122:627–633.

    Article  PubMed  CAS  Google Scholar 

  • Dudareva, N., Murfitt, L., Mann, C., Gorenstein, N., Kosolova, N., Kish, C., Bonham, C., and Wood, K. 2000. Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12:949–961.

    Article  PubMed  CAS  Google Scholar 

  • Eckhart, V. M. 1999. Sexual dimorphism in flowers and inflorescences, pp. 123–148, in M. A. Geber, T. E. Dawson, and L. F. Delph (eds.). Gender and Sexual Dimorphism in Flowering Plants. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Ervik, F., Tollsten, L., and Knudsen, J. T. 1999. Floral scent chemistry and pollination ecology in phytelephantoid palms (Arecaeae). Plant Syst. Evol. 217:279–297.

    Article  Google Scholar 

  • Flamini, G., Cioni, P., and Morelli, I. 2003. Use of solid-phase micro-extraction as a sampling technique in the determination of volatiles emitted by flowers, isolated flower parts and pollen. J. Chromatogr. A. 998:229–233.

    Article  PubMed  CAS  Google Scholar 

  • Galen, C. 1999. Flowers and enemies: predation by nectar thieving ants in relation to variation in floral form of an alpine wildflower, Polemonium viscosum. Oikos 85:426–434.

    Article  Google Scholar 

  • Grison-Pige, L., Bessiere, J.-M., Turlings, T. C. J., Kjellberg, F., Roy, J., and Hossaert-McKey, M. M. 2001. Limited intersex mimicry of floral odour in Ficus carica. Funct. Ecol. 15:551–558.

    Article  Google Scholar 

  • Johnson, S. D. and Steiner, K. E. 2000. Generalization versus specialization in plant pollination systems. Trends Ecol. Evol. 15:140–143.

    Article  PubMed  Google Scholar 

  • Jones, A. and Burd, M. 2001. Vegetative and reproductive variation among unisexual and hermaphroditic individuals of Wurmbea dioica (Colchicaceae). Aust. J. Bot. 49:603–609.

    Article  Google Scholar 

  • Keskitalo, M., Pehu, E., and Simon, J. E. 2001. Variation in volatile compounds from tansy (Tanacetum vulgare L.) related to genetic and morphological differences of genotypes. Biochem. Syst. Ecol. 29:267–285.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen, J. T. and Tollsten, L. 1991. Floral scent and intrafloral scent differentiation in Moneses and Pyrola (Pyrolaceae). Plant Syst. Evol. 177:81–91.

    Article  Google Scholar 

  • Knudsen, J. T., Andersson, S., and Bergman, P. 1999. Floral scent attraction in Geonoma macrostachys, an understorey palm of the Amazonian rain forest. Oikos 85:409–418.

    Article  Google Scholar 

  • MacTavish, H. and Menary, R. 1997. Volatiles in different floral organs, and effect of floral characteristics on yield of extract from Boronia megastigma (Nees). Ann. Bot. 80:305–311.

    Article  CAS  Google Scholar 

  • Martins-Loução, M. A. and Brito de Carvalho, J. 1989. A cultura da alfarrobeira. DGPA. Série divulgação no. 1, Lisboa.

  • Mitrakos, K. 1981. Plant life under Mediterranean climatic conditions. Port. Acta Biol. 16:33–44.

    Google Scholar 

  • Nam, K. H., Dudareva, N., and Pichersky, E. 1999. Characterization of benzylalcohol acetyltransferases in scented and non-scented Clarkia species. Plant Cell Physiol. 40:916–923.

    PubMed  CAS  Google Scholar 

  • Nojima, S., Linn, J. R. C., and Roelofs, W. 2003. Identification of host fruit volatiles from flowering dogwood (Cornus florida) attractive to dogwood-origin Rhagoletis pomonella flies. J. Chem. Ecol. 29:2347–2357.

    Article  PubMed  CAS  Google Scholar 

  • Ômura, H., Honda, K., and Hayashi, N. 1999. Chemical and chromatic bases for preferential visiting by the cabbage butterfly, Pieris rapae, to rape flowers. J. Chem. Ecol. 25:1895–1906.

    Article  Google Scholar 

  • Ortiz, P., Arista, M., and Talavera, S. 1996. Producción de néctar y frecuencia de polinizadores en Ceratonia siliqua L. (Caesalpiniaceae). An. Jard. Bot. Madr. 54:540–546.

    Google Scholar 

  • Ortiz, P., Arista, M., and Talavera, S. 1999. Distance-independent fruit-set pattern in a dioecious population of Ceratonia siliqua (Caesalpiniaceae). Flora 194:277–280.

    Google Scholar 

  • Pellati, F., Benvenuti, S., Yoshizaki, F., Bertelli, D., and Rossi, M. C. 2005. Headspace solid-phase microextraction–gas chromatography–mass spectrometry analysis of the volatile compounds of Evodia species fruits. J. Chromatogr. A. 1087:265–273.

    Article  PubMed  CAS  Google Scholar 

  • Pichersky, E. and Gershenzon, J. 2002. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 5:237–243.

    Article  PubMed  CAS  Google Scholar 

  • Pichersky, E., Raguso, R. A., Lewinshohn, E., and Croteau, R. 1994. Floral scent production in Clarkia (Onagraceae). Plant Physiol. 106:1533–1540.

    PubMed  CAS  Google Scholar 

  • Raguso, R. A. 2004. Why are some floral nectars scented? Ecology 85:1486–1494.

    Article  Google Scholar 

  • Retana, J., Ramoneda, J., Garcia del Pino, F., and Bosch, J. 1994. Flowering phenology of carob, Ceratonia siliqua L. (Caesalpinioideae). J. Hortic. Sci. 69:97–103.

    Google Scholar 

  • Roshchina, V. V. and Roshchina, V. D. 1993. The Excretory Function of Higher Plants. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Siani, A. C., Tappin, M. R. R., Ramos, M. F. S., Mazzei, J. L., Ramos, M. C. K. V., de Aquino Neto, F. R., and Frighetto, N. J. 2002. Linalool from Lippia alba: study of the reproducibility of the essential oil profile and the enantiomeric purity. Agric. Food Chem. 50:3518–3521.

    Article  CAS  Google Scholar 

  • Tasin, M., Anfor, G., Ioriatti, C., Carlin, S., De Cristofaro, A., Schmidt, S., Bengtsson, M., Versini, G., and Witzgall, P. 2005. Antennal and behavioural responses of grapevine moth Lobesia botrana females to volatiles from grapevine. J. Chem. Ecol. 31:77–87.

    Article  PubMed  CAS  Google Scholar 

  • Thornburg, R. W., Carter, C., Powell, A., Mittler, R., Rizhsky, L., and Horner, H. T. 2003. A major function of the tobacco floral nectary is defense against microbial attack. Plant Syst. Evol. 238:211–218.

    Google Scholar 

  • Tollsten, L. and Knudsen, J. T. 1992. Floral scent in dioecious Salix (Salicaeae)—a cue determining pollination system? Plant Syst. Evol. 182:229–237.

    Article  Google Scholar 

  • Tollsten, L. and Bergström, G. 1993. Fragrance chemotypes of Platanthera (Orchidaceae): the result of adaptation to pollinating moths? Nord. J. Bot. 13:607–613.

    Article  Google Scholar 

  • Tóth, E. N., Szabó, L. G., Botz, L., and Orosz-Kovács, Z. 2003. Effect of rootstocks on floral nectar composition in apple cultivars. Plant Syst. Evol. 238:43–55.

    Google Scholar 

  • Tucker, S. 1992. The developmental basis for sexual expression in Ceratonia siliqua (Leguminosae: Caesalpinioideae: Cassieae). Am. J. Bot. 79:318–327.

    Article  Google Scholar 

  • Williams, C. F., Kuchenreuther, M. A., and Drew, A. 2000. Floral dimorphism, pollination, and self-fertilization in gynodioecious Geranium richardsonii (Geraniaceae). Am. J. Bot. 87:661–669.

    Article  PubMed  Google Scholar 

  • Wright, G. A., Skinner, B. D., and Smith, B. H. 2002. Ability of honeybee, Apis mellifera, to detect and discriminate odours of varieties of canola (Brassica rapa and Brassica napus) and snapdragon flowers (Antirrhinum majus). J. Chem. Ecol. 28:721–740.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

L. Custódio acknowledges a grant from Fundação para a Ciência e a Tecnologia (grant SFRH/BD/1274/2000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anabela Romano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Custódio, L., Serra, H., Nogueira, J.M.F. et al. Analysis of the Volatiles Emitted by Whole Flowers and Isolated Flower Organs of the Carob Tree Using HS-SPME-GC/MS. J Chem Ecol 32, 929–942 (2006). https://doi.org/10.1007/s10886-006-9044-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9044-9

Keywords

Navigation