Skip to main content

Volatile Emissions from an Odorous Plant in Response to Herbivory and Methyl Jasmonate Exposure

Abstract

Induced volatile terpenes have been commonly reported among diverse agricultural plant species, but less commonly investigated in odorous plant species. Odorous plants synthesize and constitutively store relatively large amounts of volatiles, and these may play a role in defense against herbivores. We examined the effect of herbivory and methyl jasmonate (MeJA) exposure on the release of volatile organic compounds (VOCs) in the marsh elder, Iva frutescens, which contains numerous constitutive VOCs, mainly mono- and sesquiterpenes. Our specific goal was to test for the presence of inducible VOCs in a naturally occurring plant already armed with VOCs. The abundant, native specialist leaf beetle Paria aterrima was used in herbivore induction trials. VOCs were sampled from herbivore wounded and unwounded, and from MeJA treated and untreated I. frutescens. Total VOC emissions were significantly greater in response to herbivory and MeJA treatment compared to unwounded controls. Herbivore wounding caused a substantial shift in the emission profile (42 VOCs from wounded, compared to 8 VOCs from unwounded I. frutescens), and MeJA had a similar yet less substantial influence on the emission pattern (28 VOCs from MeJA treated compared to 8 VOCs from untreated I. frutescens). Constitutive VOC emissions predominated, but some VOCs were detected only in response to herbivory and MeJA treatment, suggesting de novo synthesis. Several VOCs exhibited a delayed emission profile in contrast to the rapid release of constitutive VOCs, and principal components analysis revealed they were not associated with constitutive emissions. While I. frutescens contains many constitutive VOCs that are released immediately in response to herbivory, it also produces novel VOCs in response to feeding by the specialist P. aterrima and MeJA treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Adams, R. P. 1995. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy. Allured Publishing, Carol Stream, IL.

    Google Scholar 

  2. Alborn, H. T., Turlings, T. C. J., Jones, T. H., Stenhagen, G., Loughrin, J. H., and Tumlinson, J. H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949.

    Article  CAS  Google Scholar 

  3. Bertness, M. D. and Yeh, S. M. 1994. Cooperative and competitive interactions in the recruitment of marsh elders. Ecology 75:2416–2429.

    Article  Google Scholar 

  4. Boumeester, H. J., Verstappen, F. W. A., Posthumus, M. A., and Dicke, M. 1999. Spider mite-induced (3S)-(E)-nerolidol synthase activity in cucumber and lima bean. The first dedicated step in acyclic C11-homoterpene biosynthesis. Plant Physiol. 121:173–180.

    Article  PubMed  Google Scholar 

  5. De Boer, J. G. and Dicke, M. 2004. The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. J. Chem. Ecol. 30:255–271.

    Article  PubMed  Google Scholar 

  6. Degenhardt, J. and Gershenzon, J. 2000. Demonstration and characterization of (E)-nerolidol synthase from maize: A herbivore-inducible terpene synthase participating in (3E)-4,8-dimethyl-1,3,7-nonatriene biosynthesis. Planta 210:815–822.

    Article  PubMed  CAS  Google Scholar 

  7. Dicke, M., Gols, R., Ludeking, D., and Posthumus, M. A. 1999. Jasmonic acid and herbivory differentially induce carniviore-attracting plant volatiles in lima bean plants. J. Chem. Ecol. 25:1907–1922.

    Article  CAS  Google Scholar 

  8. Dicke, M., Vanbeek T. A., Pesthumus M. A., Bendom, N., Vanbokhoven, H., and Degroot, A. E. 1990. Isolation and identification of volatile kairomone that affects acarine predator–prey interactions—involvement of host plant in its production. J. Chem. Ecol. 16:381–396.

    Article  CAS  Google Scholar 

  9. Drukker, B., Bruin, J., Jacobs, G., Kroon, A., and Sabelis, M.W. 2000. How predatory mites learn to cope with variability in volatile plant signals in the environment of their herbivorous prey. Exp. Appl. Acarol. 24:881–895.

    Article  PubMed  CAS  Google Scholar 

  10. Farag, M. A. and Paré , P. W. 2002. C6-green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61:545–554.

    Article  PubMed  CAS  Google Scholar 

  11. Farmer, E. E. and Ryan, C. A. 1990. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87:7713–7716.

    PubMed  Article  CAS  Google Scholar 

  12. Farmer, E. E., Almeras, E., and Krishnawurthy, V. 2003. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr. Opin. Plant Biol. 6:372–378.

    Article  PubMed  CAS  Google Scholar 

  13. Fukushima, J., Kainoh, Y., Honda, H., and Takabayashi, J. 2002. Learning of herbivore-induced and nonspecific plant volatiles by a parasitoid Cotesia kariyai. J. Chem. Ecol. 28:579–586.

    PubMed  Article  CAS  Google Scholar 

  14. Gershenzon, J. and Croteau, R. 1993. Terpenoid biosynthesis: The basic pathway and formation of monoterpenes, sesquiterpenes, and diterpenes, pp. 333–388, in T. S. Moore Jr. (ed.). Lipid Metabolism in Plants. CRC Press, Boca Raton, FL.

    Google Scholar 

  15. Heil, M. 2004. Direct defense or ecological costs: Responses of herbivorous beetles to volatiles released by wild lima bean (Phaseolus lunatus). J. Chem. Ecol. 30:1289–1295.

    Article  PubMed  CAS  Google Scholar 

  16. Karban, R. and Baldwin, I. T. 1997. Induced Responses to Herbivory. Univ. Chicago Press, Chicago.

    Google Scholar 

  17. Kessler, A. and Baldwin, I. T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2214.

    Article  PubMed  CAS  Google Scholar 

  18. Koch, T., Krumm, T., Jung, V., Engelberth, J., and Boland, W. 1999. Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates of the octadecanoid-signaling pathway. Plant Phsyiol. 121:153–162.

    Article  CAS  Google Scholar 

  19. Lichtenthaler, H. K., Rohmer, M., and Schwender, J. 1997. Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Plant Physiol. 101: 643–652.

    Article  CAS  Google Scholar 

  20. Litvak, M. E. and Monson, R. K. 1998. Patterns of induced and constitutive monterpene production in conifer needles in relation to insect herbivory. Oecologia 114:531–540.

    Article  Google Scholar 

  21. Loughrin, J. H., Manukian, A., Heath, R. R., Turlings, T. C. J., and Tumlinson, J. H. 1994. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. Proc. Natl. Acad. Sci. USA 91:11836–11840.

    PubMed  Article  CAS  Google Scholar 

  22. Martin, D. M., Gershenzon, J., and Bohlmann, J. 2003. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway Spruce. Plant Phsyiol. 132:1586–1599.

    Article  CAS  Google Scholar 

  23. Mattiacci, L., Rocca, B. A., Scascighini, N., D’Alessandro, M., Hern, A., and Dorn, S. 2001. Systemically induced plant volatiles emitted at the time of “danger”. J. Chem. Ecol. 27:2233–2252.

    Article  PubMed  CAS  Google Scholar 

  24. Niinemets, U., Loreto, F., and Reichstein, M. 2004. Physiological and physiochemical controls on foliar volatile organic compound emissions. Trends Plant Sci. 9:180–186.

    Article  PubMed  CAS  Google Scholar 

  25. Paré, P. W. and Tumlinson, J. H. 1997a. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Phsyiol. 114:1161–1167.

    Google Scholar 

  26. Paré, P. W. and Tumlinson, J. H. 1997b. Induced synthesis of plant volatiles. Nature 385:30–31.

    Article  Google Scholar 

  27. Paré, P. W. and Tumlinson, J. H. 1999. Plant volatiles as a defense against insect herbivores. Plant Phsyiol. 121:325–331.

    Article  Google Scholar 

  28. Paré, P. W., Farag, M. A., Krishnamachari, V., Zhang, H., Ryu, C. M., and Kloepper, J. W. 2005. Elicitors and priming agents initiate plant defense responses. Photosynth. Res. 85:149–159.

    Article  PubMed  CAS  Google Scholar 

  29. Pennings, S. C. and Callaway, R. M. 1992. Salt-marsh plant zonation—The relative importance of competition and physical factors. Ecology 73:681–690.

    Article  Google Scholar 

  30. Pennings, S. C. and Moore, D. J. 2001. Zonation of shrubs in western atlantic salt marshes. Oecologia 126:587–594.

    Article  Google Scholar 

  31. Raffa, K. E. and Smalley, E. B. 1995. Interaction of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle–fungal complexes. Oecologia 102:285–295.

    Article  Google Scholar 

  32. Reymond, P. and Farmer, E. E. 1998. Jasmonates and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1:404 –411.

    Article  PubMed  CAS  Google Scholar 

  33. Rodriguez-Saona, C., Crafts-Brandner, S. J., Paré, P. W., and Henneberry, T. J. 2001. Exogenous methyl jasmonate induces volatile emissions in cotton plants. J. Chem. Ecol. 27:679–695.

    Article  PubMed  CAS  Google Scholar 

  34. Schmelz, E. A., Alborn, H. T., Banchio, E., and Tumlinson, J. H. 2003. Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory. Planta 216:665–673.

    PubMed  CAS  Google Scholar 

  35. Sharkey, T. D. and Singsaas, E. L. 1995. Why plants emit isoprene. Nature 374:769.

    Article  CAS  Google Scholar 

  36. Thaler, J. S., Stout, M. J., Karban, R., and Duffey, S. S. 1996. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. Chem. Ecol. 22:1767–1781.

    Article  CAS  Google Scholar 

  37. Theis, N. and Lerdau, M. 2003. The evolution of function in plant secondary metabolites. Int. J. Plant Sci. 164:S93–S102.

    Article  CAS  Google Scholar 

  38. Turlings, T. C. J., Tumlinson, J. H., Heath, R. R., Proveaux, A. T., and Doolittle, R. E. 1991. Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson) to the microhabitat of one of its hosts. J. Chem. Ecol. 17:2235–2251.

    Article  CAS  Google Scholar 

  39. Vanpoecke, R. M. P., Posthumus, M. A., and Dicke, M. 2001. Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: Chemical, behavioral, and gene-expression analysis. J. Chem. Ecol. 27:1911–1928.

    Article  PubMed  CAS  Google Scholar 

  40. 565 Walling, L. L. 2000. The myriad of plant responses to herbivores. J. Plant Regul. 19:195–216.

    CAS  Google Scholar 

  41. Wang, M. 2001. Convergence of foliar monoterpenes in plant communities. PhD dissertation, University of South Carolina, Columbia.

  42. Wilcox, J. A. 1957. A revision of the North American species of Paria Lec. (Coleoptera: Chrysomelidae). N.Y. State Mus. Sci. Serv. Bull. 365:1–45.

    Google Scholar 

  43. Wittstock, U. and Gershenzon, J. 2002. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol. 5:1–8.

    Article  Google Scholar 

Download references

Acknowledgment

We thank the Belle W. Baruch Institute for access to the field site. Special thanks to Dr. Min Wang and Dr. Randi Hansen for their assistance with transplanting of I. frutescens.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David C. Degenhardt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Degenhardt, D.C., Lincoln, D.E. Volatile Emissions from an Odorous Plant in Response to Herbivory and Methyl Jasmonate Exposure. J Chem Ecol 32, 725–743 (2006). https://doi.org/10.1007/s10886-006-9030-2

Download citation

Keywords

  • Iva frutescens
  • Paria aterrima
  • Herbivory
  • Methyl jasmonate
  • Volatile emission
  • Terpenes
  • Plant defense
  • Constitutive defense
  • Induced defense