Skip to main content
Log in

Defensive Secretion Components of the Host Parastizopus armaticeps as Kairomones for the Cleptoparasite Eremostibes opacus

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The subsocial tenebrionid Parastizopus armaticeps Pér. is parasitized by the closely related Eremostibes opacus Koch (Coleoptera: Tenebrionidae). We found that the pygidial defensive secretions of both species are similar and contain a mixture of 1,4-benzoquinones, 1-alkenes, and monoterpene hydrocarbons. The 1-alkenes are dominated by 1-undecene, with admixtures of 1-tridecene in both species and 1-pentadecene in P. armaticeps only. Methyl- and ethyl-1,4-benzoquinone are the major quinones of the secretions of both species. The monoterpene fractions consist of (−)-α-pinene, (−)-camphene, sabinene, (−)-β-pinene, and (−)-limonene. Volatiles trapped with Porapak Q at the entrance to the breeding burrows of P. armaticeps were identified as components of the defensive secretion. However, in contrast to the secretion, the 1,4-benzoquinones were almost completely absent in the volatiles. Bioassays investigating attraction showed that the cleptoparasite E. opacus was drawn to the monoterpene hydrocarbons, produced by P. armaticeps, and deterred by the 1,4-benzoquinones. The 1-alkenes had no effect. Among the monoterpenes, only (−)-camphene was attractive to E. opacus. This is one of the rare cases of chemical exploitation of defensive allomones, and the first based on odor homology. We have drawn an evolutionary scenario including various functional changes in the defensive secretion compounds, leading to the kairomonal exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aldrich, J. R. 1999. Predators, pp. 357–381, in J. Hardie and A. K. Minks (eds.). Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants. CABI Publishing, Oxon.

    Google Scholar 

  • Aldrich, J. R. and Barros, T. M. 1995. Chemical attraction of male crab spiders (Araneae, Thomisidae) and kleptoparasitic flies (Diptera, Milichiidae and Chloropidae). J. Arachnol. 23:212–214.

    Google Scholar 

  • Aldrich, J. R., Carroll, S. P., Oliver, J. E., Lusby, W. R., Rudmann, A. A., and Waters, R. M. 1990. Exocrine secretions of scentless plant bugs: Jadera, Boisea and Niesthrea species (Hemiptera: Heteroptera: Rhopalidae). Biochem. Syst. Ecol. 18:369–376.

    Article  CAS  Google Scholar 

  • Attygalle, A. B., Blankespoor, C. L., Meinwald, J., and Eisner, T. 1991. Defensive secretion of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Chem. Ecol. 17:805–810.

    Article  CAS  Google Scholar 

  • Blum, M. S. 1996. Semiochemical parsimony in the Arthropoda. Annu. Rev. Entomol. 41:353–374.

    Article  PubMed  CAS  Google Scholar 

  • Bowers, W. W. and Borden, J. H. 1992. Attraction of Lasconotus intricatus Kraus. (Coleoptera: Colydiidae) to the aggregation pheromone of the four-eyed spruce bark beetle Polygraphus rufipennis Kirby (Coleoptera: Scolytidae). Can. Entomol. 124:1–5.

    CAS  Google Scholar 

  • Brand, J. M., Blum, M. S., Lloyd, H. A., and Fletcher, D. J. C. 1974. Monoterpene hydrocarbons in the poison gland secretion of the ant Myrmicaria natalensis (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 67:525–526.

    CAS  Google Scholar 

  • Brown, W. V., Doyen, J. T., Moore, B. P., and Lawrence, J. F. 1992. Chemical composition and taxonomic significance of defensive secretions of some Australian Tenebrionidae (Coleoptera). J. Aust. Entomol. Soc. 31:79–89.

    Article  Google Scholar 

  • Eisner, T., Eisner, M., and Deyrup, M. 1991. Chemical attraction of kleptoparasitic flies to heteropteran insects caught by orb-weaving spiders. Proc. Natl. Acad. Sci. USA 88:8194–8197.

    Article  PubMed  CAS  Google Scholar 

  • Geiselhardt, S. F., Geiselhardt, S., Peschke, K. in press. Chemical mimicry of cuticular hydrocarbons—how does Eremostibes opacus gain access to breeding burrows of its host Parastizopus armaticeps (Coleoptera, Tenebrionidae). Chemoecology.

  • Gnanasunderam, C., Young, H., and Hutchins, R. F. N. 1981. Defensive secretions of New Zealand tenebrionids: I. Presence of monoterpene hydrocarbons in the genus Artystona (Coleoptera, Tenebrionidae). J. Chem. Ecol. 7:889–894.

    Article  CAS  Google Scholar 

  • Gush, T. J., Bentley, B. L., Prestwich, G. D., and Thorne, B. L. 1985. Chemical variation in defensive secretions of four species of Nasutitermes. Biochem. Syst. Ecol. 13:329–336.

    Article  CAS  Google Scholar 

  • Happ, G. M. 1968. Quinone and hydrocarbon production in the defensive glands of Eleodes longicollis and Tribolium castaneum (Coleoptera, Tenebrionidae). J. Insect Physiol. 14:1821–1837.

    Article  CAS  Google Scholar 

  • Hein, E., Rasa, O. A. E., and Ockenfels, P. 1996. Odour profile congruity in two closely related desert tenebrionid beetles: homology as the basis for a cleptoparasitic relationship? Chemoecology 7:156–161.

    Article  CAS  Google Scholar 

  • Helsberg, D. 1994. Wüstenschwarzkäfergemeinschaften: Der Einfluß von Aggregationsbildung auf den relativen Wasserverlust von Individuen. Unpublished, Diploma Thesis, University of Bonn.

  • Kielty, J. P., Allen-Williams, L. J., Underwood, N., and Eastwood, E. A. 1996. Behavioral responses of three species of ground beetles (Coleoptera: Carabidae) to olfactory cues associated with prey and habitat. J. Insect Behav. 9:237–250.

    Article  Google Scholar 

  • Krell, F.-T., Schmitt, T., and Linsenmair, K. E. 1997. Diplopod defensive secretions as attractants for necrophagous scarab beetles (Diplopoda; Insecta, Coleoptera: Scarabaeidae). Entomol. Scand., Suppl. 51:281–285.

    Google Scholar 

  • Markarian, H., Florentine, G. J., and Pratt Jr., J. J. 1978. Quinone production of some species of Tribolium. J. Insect Physiol. 24:785–790.

    Article  CAS  Google Scholar 

  • Mattiacci, L., Vinson, S. B., Williams, H. J., Aldrich, J. R., and Bin, F. 1993. A long-range attractant kairomone for egg parasitoid Trissolcus basalis, isolated from defensive secretion of its host, Nezara viridula. J. Chem. Ecol. 19:1167–1181.

    Article  CAS  Google Scholar 

  • Moore, B. P. 1968. Volatile terpenes from Nasutitermes soldiers (Isoptera, Termitidae). J. Insect Physiol. 10:371–375.

    Article  Google Scholar 

  • Peschke, K. and Eisner, T. 1987. Defensive secretion of the tenebrionid beetle, Blaps mucronata: Physical and chemical determinants of effectiveness. J. Comp. Physiol., A 161:377–388.

    Article  CAS  Google Scholar 

  • Peschke, K. and Metzler, M. 1982. Defensive and pheromonal secretion of the tergal gland of Aleochara curtula I. The chemical composition. J. Chem. Ecol. 8:773–783.

    Article  CAS  Google Scholar 

  • Powell, W. 1999. Parasitoid hosts, pp. 405–427, in J. Hardie and A. K. Minks (eds.). Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants. CABI Publishing, Oxon.

    Google Scholar 

  • Prendeville, H. R. and Stevens, L. 2002. Microbe inhibition by Tribolium flour beetles varies with beetles species, strain, sex, and microbe group. J. Chem. Ecol. 28:1183–1190.

    Article  PubMed  CAS  Google Scholar 

  • Rasa, O. A. E. 1990. Evidence for subsociality and division of labor in a desert tenebrionid beetle Parastizopus armaticeps Peringuey. Naturwissenschaften 77:591–592.

    Article  Google Scholar 

  • Rasa, O. A. E. 1994. Parabiosis and its proximate mechanisms in four Kalahari desert tenebrionid beetles. Ethology 98:137–148.

    Article  Google Scholar 

  • Rasa, O. A. E. 1996. Interspecific association in desert tenebrionid beetles: a cleptoparasite does not affect the host's reproductive success, but that of its offspring. Naturwissenschaften 83:575–577.

    CAS  Google Scholar 

  • Rasa, O. A. E. and Endrödy-Younga, S. 1997. Intergeneric associations of stizopinid tenebrionids relative to their geographical distribution (Coleoptera: Tenebrionidae: Opatrini: Stizopina). Afr. Entomol. 5:231–239.

    Google Scholar 

  • Rosengaus, R. B., Lefebvre, M. L., and Traniello, J. F. A. 2000. Inhibition of fungal spore germination by Nasutitermes: Evidence for a possible antiseptic role of soldier defensive secretions. J. Chem. Ecol. 26:21–39.

    Article  CAS  Google Scholar 

  • Schmitt, T., Krell, F.-T., and Linsenmair, K. E. 2004. Quinone mixture as attractant for necrophagous dung beetles specialized on dead millipedes. J. Chem. Ecol. 30:731–740.

    Article  PubMed  CAS  Google Scholar 

  • Stowe, M. K., Turlings, T. C. J., Loughrin, J. H., Lewis, W. J., and Tumlinson, J. H. 1995. The chemistry of eavesdropping, alarm, and deceit. Proc. Natl. Acad. Sci. USA 92:23–28.

    Article  PubMed  CAS  Google Scholar 

  • Tannert, W. and Hien, B. C. 1973. Nachweis und Funktion eines “Versammlungsduftstoffes” und eines “Alarmduftstoffes” bei Blaps mucronata Latr., 1804 (Coleopt.-Tenebrionidae). Biol. Zbl. 92:601–612.

    Google Scholar 

  • Teerling, C. R., Gillespie, D. R., and Borden, J. H. 1993. Utilization of western flower thrips alarm pheromone as a prey-finding kairomone by predators. Can. Entomol. 125:431–437.

    Article  Google Scholar 

  • Tschinkel, W. R. 1975. A comparative study of the chemical defensive system of tenebrionid beetles—Chemistry of the secretions. J. Comp. Physiol. 21:753–783.

    CAS  Google Scholar 

  • Vinson, S. B. 1984. Parasitoid–host relationship, pp. 205–233, in W. J. Bell, and R. T. Cardé (eds.). Chemical Ecology of Insects. Chapman and Hall, London.

    Google Scholar 

  • Weseloh, R. M. 1981. Host location by parasitoids, pp. 79–95, in D. A. Nordlund, R. L. Jones, and W. J. Lewis (eds.). Semiochemicals: their Role in Pest Control. John Wiley, New York.

    Google Scholar 

  • Zhu, J., Cossé, A. A., Obrycki, J. J., Boo, K. S., and Baker, T. C. 1999. Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea to semiochemicals released from their prey and host plant: Electroantennogram and behavioral responses. J. Chem. Ecol. 25:1163–1177.

    Article  CAS  Google Scholar 

  • Zuk, M. and Kolluru, G. R. 1998. Exploitation of sexual signals by predators and parasitoids. Quart. Rev. Biol. 73:415–438.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Thomas Schmitt for synthesis of isopropyl- and propyl-1,4-benzoquinone as reference standards and to Sonia Whitlow, Stefanie Geiselhardt, and two anonymous reviewers for helpful comments on the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft, Bonn (Ra 338/5-4, Pe 231/13-1,2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Geiselhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiselhardt, S., Szepat, T., Rasa, O.A.E. et al. Defensive Secretion Components of the Host Parastizopus armaticeps as Kairomones for the Cleptoparasite Eremostibes opacus . J Chem Ecol 32, 767–778 (2006). https://doi.org/10.1007/s10886-006-9028-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9028-9

Keywords

Navigation