Journal of Chemical Ecology

, 32:391 | Cite as

Feeding Behavior of Lambs in Relation to Kinetics of 1,8-cineole Dosed Intravenously or into the Rumen

  • Luthando E. Dziba
  • Jeffery O. Hall
  • Frederick D. Provenza


The monoterpene 1,8-cineole is a major constituent of the essential oils that adversely influence intake of sagebrush by herbivores, but little is known about the mechanisms of its action. We investigated the influence of 1,8-cineole on the feeding behavior of two groups of sheep, one group dosed intravenously and the other intraruminally. In the first study, we infused 40 mg/kg BW of 1,8-cineole intravenously into four lambs on wk 1, 2, and 4. In the second, we administered 125 mg/kg BW of 1,8-cineole into the rumen of four lambs as a single-bolus dose in wk 1 and 2. Lambs dosed intravenously spent less time feeding than controls (28 vs. 60 min; P < 0.05), as did lambs dosed intraruminally (35 vs. 60 min; P < 0.05). Dosed lambs ate less than controls during rumen dosing studies (P < 0.05). For the intravenous infusion studies, rates of elimination did not differ among weeks (P < 0.05). For the rumen infusion studies, however, the absorption rate constant increased from 0.035/min to 0.076/min from wk 1 to 2, while the absorption half-life declined from 24 to 10 min (P < 0.05). Maximum plasma concentrations and time to reach maximum plasma concentrations were no faster in wk 2 than wk 1, but the primary elimination rate constant was 2.3 times higher in wk 2 (0.058/min) than in wk 1 (0.025/min) (P < 0.05). Dosed lambs exhibited clinical effects—licking of lips, drowsiness, staggering, and 1,8-cineole-smelling breath—that were much more pronounced with intravenous than rumen infusions. Dosing did not affect the acid–base balance. Collectively, these data suggest 1) rapid absorption and distribution of 1,8-cineole was responsible for initiating satiety, while more prolonged excretion was responsible for the duration of the satiety effect, and 2) lambs more readily adapted to 1,8-cineole in the rumen-dose study than in the intravenous-dose study.

Key Words

1,8-Cineole monoterpenes feeding kinetics elimination rumen microbes sheep 


  1. Banner, R. E., Rogosic, J., Burritt, E. A., and Provenza, F. D. 2000. Supplemental barley and activated charcoal increase intake of sagebrush by lambs. J. Range Manage. 53:415–420.CrossRefGoogle Scholar
  2. Benet, L. Z., Mitchell, J. R., and Sheiner, L. B. 1990. Pharmacokinetics: The dynamics of drug absorption, distribution, and elimination, pp. 3–32, in A. Goodman Gilman, T. W. Rall, A. S. Nies, and P. Taylor (eds.). Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th edn. McGraw-Hill, New York, NY.Google Scholar
  3. Boyle, R. R. and Mclean, S. 2004. Constraints of feeding by chronic ingestion of 1,8-cineole in the brushtail possum (Trichosurus vulpecula). J. Chem. Ecol. 30:757–775.PubMedCrossRefGoogle Scholar
  4. Boyle, R., Mclean, S., Foley, W., Davies, N. W., Peacock, E. J., and Moore, B. 2001. Metabolites of dietary 1,8-ceneole in the male koala (Phascolarctos cinereus). Comp. Biochem. Physiol., C 129:385–395.Google Scholar
  5. Cheeke, P. R. 1998. Natural Toxicants in Feeds, Forages, and Poisonous Plants, 2nd edn. Interstate, Danville, IL.Google Scholar
  6. Cluff, L. K., Welch, B. L., Pederson, J. C., and Brotherson, J. D. 1982. Concentration of sagebrush monoterpenes in the rumen ingesta of wild mule deer. J. Range Manage. 35:192–194.CrossRefGoogle Scholar
  7. Craig, J. D. 1953. Poisoning by the volatile oils in childhood. Arch. Dis. Child. 28:475–483.PubMedGoogle Scholar
  8. Dearing, M. D., Mangione, A. M., and Karasov, W. H. 2001. Plant secondary compounds as diuretics: An overlooked consequence. Am. Zool. 41:890–901.CrossRefGoogle Scholar
  9. Dearing, M. D., Mangione, A. M., and Karasov, W. H. 2002. Ingestion of plant secondary compounds causes diuresis in woodrat herbivores. Oecologia 130:576–584.CrossRefGoogle Scholar
  10. Dziba, L. E. and Provenza, F. D. 2006. Sagebrush monoterpenes influence frequency and duration of feeding bouts and regulation of food intake by lambs. Appl. Anim. Behav. Sci. (in press).Google Scholar
  11. Dziba, L. E., Provenza, F. D., Villalba, J. J., and Atwood, S. B. 2006. Supplemental energy and protein increase use of sagebrush by sheep. Small Rumin. Res. (in press).Google Scholar
  12. Foley, W. J., Lassak, E. V., and Brophy, J. J. 1987. Digestion and absorption of Eucalyptus essential oils in greater glider (Petauroides volans) and brushtail possum (Trichosurus vulpecula). J. Chem. Ecol. 13:2115–2130.CrossRefGoogle Scholar
  13. Foley, W. J., Mclean, S., and Cork, S. J. 1995. Consequences of biotransformation of plant secondary metabolites on acid–base metabolism in mammals—a final common pathway?Google Scholar
  14. Foley, W. J., Iason, G. R., and Mcarthur, C. 1999. Role of plant secondary metabolites in the nutritional ecology of mammalian herbivores: how far have we come in 25 years?, pp. 130–209, in H. G. Jung and G. C. Fahey Jr. (eds.). Nutritional Ecology of Herbivores. Proc. Vth International Symposium on Herbivore Nutrition, American Society of Animal Science, Savoy, IL.Google Scholar
  15. Freeland, W. J. and Janzen, D. H. 1974. Strategies in herbivory by mammals: The role of plant secondary compounds. Am. Nat. 108:269–287.CrossRefGoogle Scholar
  16. Garcia, J. 1989. Food for Tolman: Cognition and cathexis in concert, pp. 45–85, in T. Archer and L. Nilsson (eds.). Aversion, Avoidance and Anxiety. Laurence Erlbaum, Hillsdale, NJ.Google Scholar
  17. Garcia, J., Lasiter, P. A., Bermudez-Rattoni, F., and Deems, D. A. 1985. A general theory of aversion learning, pp. 8–21, in N. S. Braveman and P. Bronstein (eds.). Experimental Assessments and Clinical Applications of Conditioned Food Aversions. New York Acad. Sci., New York, NY.Google Scholar
  18. Guyton, A. C. and Hall, J. E. 2000. Textbook of Medical Physiology, 10th edn. Saunders, New York, NY.Google Scholar
  19. Illius, A. W. and Jessop, N. S. 1997. Modeling animal responses to plant toxins, pp. 243–253, in J. P. Felix D'Mello (ed.). Handbook of Plant and Fungal Toxicants. CRC Press, New York, NY.Google Scholar
  20. Jaffe, J. H. 1990. Drug addiction and drug abuse, pp. 522–573, in A. Goodman Gilman, T. W. Rall, A. S. Nies, and P. Taylor (eds.). Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th edn. McGraw-Hill, New York, NY.Google Scholar
  21. Johnson, A. E., James, L. F., and Spillet, J. 1976. The abortifacient and toxic effects of big sagebrush (Artemisia tridentata) and juniper (Juniperus osteosperma) on domestic sheep. J. Range Manage. 29:278–280.CrossRefGoogle Scholar
  22. Kelsey, R. G., Stephens, J. R., and Shafizadeh, F. 1982. The chemical constituents of sagebrush foliage and their isolation. J. Range Manage. 35:617–622.CrossRefGoogle Scholar
  23. Kimball, B. A., Dziba, L. E., Johnston, J. J., and Provenza, F. D. 2004. Chromatographic analysis of sagebrush monoterpenes in blood plasma. J. Chromatogr. Sci. 42:245–249.Google Scholar
  24. Louden, J. D., Roberts, R. R., and Goodship, T. H. J. 1999. Acidosis and nutrition. Kidney Int. 56:85–88.CrossRefGoogle Scholar
  25. Meyer, M. W. and Karasov, W. H. 1991. Chemical aspects of herbivory in arid and semiarid habitats, pp. 167–187, in R. T. Palo and C. T. Robbins (eds.). Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, FL.Google Scholar
  26. Mudge, G. H. and Weiner, I. M. 1990. Agents affecting volume and composition of body fluids, pp. 682–707, in A. Goodman Gilman, T. W. Rall, A. S. Nies, and P. Taylor (eds.). Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th edn. McGraw-Hill, New York, NY.Google Scholar
  27. Nagy, J. G, Steinhoff, H. W., and Ward, G. M. 1964. Effects of essential oils of sagebrush on deer rumen microbial function. J. Wildl. Manage. 28:785–790.CrossRefGoogle Scholar
  28. National Research Council (NRC) 1985. Nutrient Requirements of Sheep, 6th. National Academy of Sciences, Washington, DC.Google Scholar
  29. Ngugi, R. K., Hinds, F. C., and Powell, J. 1995. Mountain big sagebrush browse decreases dry matter intake, digestibility and nutritive quality of sheep diets. J. Range Manage. 48:487–492.CrossRefGoogle Scholar
  30. Oh, H. K., Jones, M. B., and Longhurst, W. M. 1968. Comparison of rumen microbial inhibition resulting from various essential oils isolated from relatively unpalatable plants. Appl. Microbiol. 16:39–44.PubMedGoogle Scholar
  31. Pass, G. J. and Mclean, S. 2002. Inhibition of the microsomal metabolism of 1,8-cineole in the common brushtail possum (Trichosurus vulpecula) by terpenes and other chemicals. Xenobiotica 32:1109–1126PubMedCrossRefGoogle Scholar
  32. Pass, G. J., Mclean, S., and Stupans, I. 1999. Induction of xenobiotic metabolising enzymes in the common brushtail possum, Trichosurus vulpecula, by Eucalyptus terpenes. Comp. Biochem. Physiol., C 124:239–246.Google Scholar
  33. Patel, S. and Wiggins, J. 1980. Eucalyptus oil poisoning. Arch. Dis. Child. 55:405–406.PubMedCrossRefGoogle Scholar
  34. Personius, T. L., Wambolt, C. L., Stephens, J. R., and Kelsey, R. G. 1987. Crude terpenoid influence on mule deer preference for sagebrush. J. Range Manage. 40:84–88.CrossRefGoogle Scholar
  35. Provenza, F. D. 1995. Postingestive feedback as an elementary determinant of food preference and intake in ruminants. J. Range Manage. 48:2–17.CrossRefGoogle Scholar
  36. Provenza, F. D. 1996. Acquired aversions as the basis for varied diets of ruminants foraging on rangelands. J. Anim. Sci. 74:2010–2020.PubMedGoogle Scholar
  37. Provenza, F. D. and Villalba, J. J. 2006. Foraging in domestic vertebrates: Linking the internal and external milieu, in V. L. Bels (ed.). Feeding in Domestic Vertebrates: From Structure to Function. CABI Publ., Oxfordshire, UK. (in press).Google Scholar
  38. Provenza, F. D., Lynch, J. J., and Nolan, J. V. 1993. Temporal contiguity between food ingestion and toxicosis affects the acquisition of food aversions in sheep. Appl. Anim. Behav. Sci. 38:269–281.CrossRefGoogle Scholar
  39. Provenza, F. D., Villalba, J. J., Dziba, L. E., Atwood, S. B., and Banner, R. E. 2003. Linking herbivore experience, varied diets, and plant biochemical diversity. Small Rumin. Res. 49:257–274.CrossRefGoogle Scholar
  40. Rall, T. W. 1990. Hypnotics and sedatives: Ethanol, pp. 345–382, in A. Goodman Gilman, T. W. Rall, A. S. Nies, and P. Taylor (eds.). Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th edn. McGraw-Hill, New York, NY.Google Scholar
  41. Rozman, K. K. and Klaassen, C. D. 2001. Absorption, distribution, and excretion of toxicants, pp. 107–132, in C. D. Klaassen (ed.). Casarett & Doull's Toxicology. The Basic Science of Poisons. McGraw-Hill, New York, NY.Google Scholar
  42. Tibballs, J. 1995. Clinical effects and management of eucalyptus oil ingestion in infants and young children. Med. J. Aust. 163:177–180.PubMedGoogle Scholar
  43. Villalba, J. J., Provenza, F. D., and Banner, R. E. 2002. Influence of macronutrients and medicines on utilization of toxin-containing foods by sheep and goats. I. Responses to sagebrush. J. Anim. Sci. 80:2099–2109.PubMedGoogle Scholar
  44. Villalba, J. J., Provenza, F. D., and Han, G. 2004. Experience influences diet mixing by herbivores: Implications for plant biochemical diversity. Oikos 107:100–109.CrossRefGoogle Scholar
  45. Welch, B. L. and Pederson, J. C. 1981. In vitro digestibility among accessions of big sagebrush by wild mule deer and its relationship to monoterpene content. J. Range Manage. 34:497–500.CrossRefGoogle Scholar
  46. Welch, B. L., Mcarthur, D., and Davis, J. N. 1983. Mule deer preference and monoterpenoids (essential oils). J. Range Manage. 36:485–487.CrossRefGoogle Scholar
  47. White S. M., Flinders, J. T., and Welch, B. L. 1982. Preference of pygmy rabbits (Brachylagus idahoensis) for various populations of big sagebrush (Artemisia tridentate). J. Range Manage. 35:724–726.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Luthando E. Dziba
    • 1
    • 3
  • Jeffery O. Hall
    • 2
  • Frederick D. Provenza
    • 1
  1. 1.Department of Forest, Range and Wildlife SciencesUtah State UniversityLoganUSA
  2. 2.Utah Veterinary Diagnostic LaboratoryUtah State UniversityLoganUSA
  3. 3.Agricultural Research CouncilIreneSouth Africa

Personalised recommendations