Journal of Chemical Ecology

, Volume 31, Issue 10, pp 2343–2356 | Cite as

Effects of Elevated CO2 and Herbivore Damage on Litter Quality in a Scrub Oak Ecosystem

  • Myra C. Hall
  • Peter Stiling
  • Bruce A. Hungate
  • Bert G. Drake
  • Mark D. Hunter


Atmospheric CO2 concentrations have increased dramatically over the last century and continuing increases are expected to have significant, though currently unpredictable, effects on ecosystems. One important process that may be affected by elevated CO2 is leaf litter decomposition. We investigated the interactions among atmospheric CO2, herbivory, and litter quality within a scrub oak community at the Kennedy Space Center, Florida. Leaf litter chemistry in 16 plots of open-top chambers was followed for 3 years; eight were exposed to ambient levels of CO2, and eight were exposed to elevated levels of CO2 (ambient + 350 ppmV). We focused on three dominant oak species, Quercus geminata, Quercus myrtifolia, and Quercus chapmanii. Condensed tannin concentrations in oak leaf litter were higher under elevated CO2. Litter chemistry differed among all plant species except for condensed tannins. Phenolic concentrations were lower, whereas lignin concentrations and lignin/nitrogen ratios were higher in herbivore-damaged litter independent of CO2 concentration. However, changes in litter chemistry from year to year were far larger than effects of CO2 or insect damage, suggesting that these may have only minor effects on litter decomposition.

Key Words

Elevated CO2 herbivory litter quality Quercus myrtifolia Quercus chapmanii Quercus geminata Kennedy Space Center 



This research was supported by the Office of Science (BER), U.S. Department of Energy, through the South East Regional Center of the National Institute for Global Environmental Change under Cooperative Agreement DE-FC03-90ER61010. We thank Chris Frost and Caralyn Zehnder for comments on a previous draft of this manuscript and Jane Rogers, Star Scott, and Oren Kleinberger for laboratory assistance. We also thank two anonymous reviewers for comments on the manuscript.


  1. Abrahamson, W. G., Hunter, M. D., Melika, G., Price, P. W. 2003Cynipid gall-wasp communities correlate with oak chemistryJ. Chem. Ecol.29209223CrossRefPubMedGoogle Scholar
  2. Agrell, J., McDonald, E. P., Lindroth, R. L. 2000Effects of CO2 and light on tree phytochemistry and insect performanceOikos88259272CrossRefGoogle Scholar
  3. Bate-Smith, E. C. 1977Astringent tannins of Acer speciesPhytochemistry1614211426CrossRefGoogle Scholar
  4. Bernays, E. A., Cooper-Driver, G., Bilgener, M. 1989Herbivores and plant tanninsBegon, M.Fitter, A. H.Ford, E. D.MacFadyen, A. eds. Advances in Ecological Research. Vol. 19Academic PressNew York, NY263302Google Scholar
  5. Chapman, S. K., Hart, S. C., Cobb, N. S., Whitham, T. G., Koch, G. W. 2003Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesisEcology8428672876Google Scholar
  6. Cooper-Driver, G., Finch, S., Swain, T. 1977Seasonal variation in secondary plant compounds in relation to the palatability of Pteridium aquilinumBiochem. Syst. Ecol.5177183CrossRefGoogle Scholar
  7. Cotrufo, M. F., Ineson, P., Rowland, A. P. 1994Decomposition of tree leaf litters grown under elevated CO2: effect of litter qualityPlant Soil163121130Google Scholar
  8. CoÛteaux, M.-M., Mousseau, M., CÉlÉrier, M.-L., Bottner, P. 1991Increased atmospheric CO2 and litter quality: decomposition of sweet chestnut leaf litter with animal food webs of different complexitiesOikos615464Google Scholar
  9. Curtis, P. S., Drake, B. G., Whigham, D. F. 1989Nitrogen and carbon dynamics in C3 and C4 estuarine marsh plants grown under elevated CO2 in situOecologia78297301CrossRefGoogle Scholar
  10. de Mazancourt, C., Loreau, M. 2000Effect of herbivory and plant species replacement on primary productionAm. Nat.155735754CrossRefPubMedGoogle Scholar
  11. Dijkstra, P., Hymus, G., Colavito, D., Vieglais, D. A., Cundari, C. M., Johnson, D. P., Hungate, B. A., Hinkle, C. R., Drake, B. G. 2002Elevated atmospheric CO2 stimulates aboveground biomass in a fire-regenerated scrub-oak ecosystemGlob. Chang. Biol.890103CrossRefGoogle Scholar
  12. Fajer, E. D., Bowers, M. D., Bazzaz, F. A. 1991The effects of enriched CO2 atmospheres on the buckeye butterfly, Junonia coeniaEcology72751754Google Scholar
  13. Finzi, A. C., Allen, A. S., Delucia, E. H., Ellsworth, D. S., Schlesinger, W. H. 2001Forest litter production, chemistry, and decomposition following two years of free-air CO2 enrichmentEcology82470484Google Scholar
  14. Frost, C., Hunter, M. D. 2004Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in oak mesocosmsEcology8533353347Google Scholar
  15. Hall, M. C., Stiling, P., Moon, D. C., Drake, B. G., Hunter, M. D. 2005Effects of elevated CO2 on foliar quality and herbivore damage in a scrub oak ecosystemJ. Chem. Ecol.31267286CrossRefPubMedGoogle Scholar
  16. HÄttenschwiler, S., Vitousek, P. M. 2000The role of polyphenols in terrestrial ecosystem nutrient cyclingTrends Ecol. Evol.15238243CrossRefPubMedGoogle Scholar
  17. Heal, O. W., Anderson, J. M., Swift, M. J. 1997Plant litter quality and decomposition: an historical overviewCadisch, G.Giller, K. E. eds. Driven by Nature: Plant Litter Quality and DecompositionCAB InternationalWallingford330Google Scholar
  18. Henry, H. A. L., Cleland, E. E., Field, C. B., Vitousek, P. M. 2005Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grasslandOecologia142465473CrossRefPubMedGoogle Scholar
  19. Horner, J. D., Gosz, J. R., Cates, R. G. 1988The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystemsAm. Nat.132869883CrossRefGoogle Scholar
  20. Kahn, D. M., Cornell, H. V. 1983Early leaf abscission and folivores: comments and considerationsAm. Nat.122428432CrossRefGoogle Scholar
  21. Kemp, P. R., Waldecker, D. G., Owensby, C. E., Reynolds, J. F., Virginia, R. A. 1994Effects of elevated CO2 and nitrogen fertilization pretreatments on decomposition on tallgrass prairie leaf litterPlant Soil165115127Google Scholar
  22. Kery, M., Hatfield, J. S. 2003Normality of raw data in general linear models: the most widespread myth in statisticsBull. Ecol. Soc. Am.849294Google Scholar
  23. Lincoln, D. E., Fajer, E. D., Johnson, R. H. 1993Plant–insect herbivore interactions in elevated CO2 environmentsTrends Ecol. Evol.86468CrossRefGoogle Scholar
  24. Lindroth, R. L. 1996CO2-mediated changes in tree chemistry and tree–Lepidoptera interactionsKoch, G. W.Mooney, H. A. eds. Carbon Dioxide and Terrestrial EcosystemsAcademic PressSan Diego, CA105120Google Scholar
  25. Lindroth, R. L., Arteel, G. E., Kinney, K. K. 1995Responses of three saturniid species to paper birch grown under enriched CO2 atmospheresFunct. Ecol.9306311Google Scholar
  26. Littell, R. C., Stroup, W. W., Freund, R. J. 2002SAS for Linear ModelsSAS PublishingCary, NCGoogle Scholar
  27. Melillo, J. M., Aber, J. D., Muratore, J. F. 1982Nitrogen and lignin control of hardwood leaf litter decomposition dynamicsEcology63621626Google Scholar
  28. Palm, C. A., Sanchez, P. A. 1990Decomposition and nutrient release patterns of the leaves of three tropical legumesBiotropica22330338Google Scholar
  29. Parsons, W. F. J., Lindroth, R. L., Bockheim, J. G. 2004Decomposition of Betula papyrifera leaf litter under the independent and interactive effects of elevated CO2 and O3Glob. Chang. Biol.1016661677CrossRefGoogle Scholar
  30. Ritchie, M. E., Tilman, D., Knops, J. M. H. 1998Herbivore effects on plant and nitrogen dynamics in oak savannaEcology79165177Google Scholar
  31. Rossiter, M. C., Schultz, J. C., Baldwin, I. T. 1988Relationships among defoliation, red oak phenolics, and gypsy moth growth and reproductionEcology69267277Google Scholar
  32. Schultz, J. C., Baldwin, I. T. 1982Oak leaf quality declines in response to defoliation by gypsy moth larvaeScience217149151Google Scholar
  33. Scott, N. A., Binkley, D. 1997Foliage litter quality and annual net N mineralization: Comparison across North American forest sitesOecologia111151159CrossRefGoogle Scholar
  34. Scowcroft, P. G., Turner, D. R., Vitousek, P. M. 2000Decomposition of Metrosideros polymorpha leaf litter along elevational gradients in HawaiiGlob. Chang. Biol.67385CrossRefGoogle Scholar
  35. Stadler, B., Solinger, S., Michalzik, B. 2001Insect herbivores and the nutrient flow from the canopy to the soil in coniferous and deciduous forestsOecologia126104113CrossRefGoogle Scholar
  36. Stiling, P., Rossi, A. M., Hungate, B., Dukstra, P., Hinkle, D. R., Knott, W. M., Drake, B. III. 1999Decreased leaf-miner abundance in elevated CO2: reduced leaf quality and increased parasitoid attackEcol. Appl.9240244PubMedGoogle Scholar
  37. Stiling, P., Cattell, M., Moon, D. C., Rossi, A., Hungate, B. A., Hymus, G., Drake, B. 2002Elevated atmospheric CO2 lowers herbivore abundance, but increases leaf abscission ratesGlob. Chang. Biol.8658667CrossRefGoogle Scholar
  38. Stiling, P., Moon, D. C., Hunter, M. D., Colson, J., Rossi, A. M., Hymus, G. J., Drake, B. G. 2003Elevated CO2 lowers relative and absolute herbivore density across all species of a scrub-oak forestOecologia1348287CrossRefPubMedGoogle Scholar
  39. Swain, T. 1980The importance of flavonoids and related compounds in fern taxonomy and ecology: an overview of the symposiumBull. Torrey Bot. Club107113115Google Scholar
  40. Swift, M. J., Heal, O. W., Anderson, J. M. 1979Decomposition in Terrestrial EcosystemsUniversity of California PressBerkeley, CAGoogle Scholar
  41. Vitousek, P. M., Turner, D. R., Parton, W. J., Sanford, R. L. 1994Litter decomposition on the Mauna Loa environmental matrix, Hawai'i: patterns, mechanisms, and modelsEcology75418429Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Myra C. Hall
    • 1
  • Peter Stiling
    • 2
  • Bruce A. Hungate
    • 3
  • Bert G. Drake
    • 4
  • Mark D. Hunter
    • 1
  1. 1.Institute of EcologyUniversity of GeorgiaAthensUSA
  2. 2.Department of BiologyUniversity of South FloridaTampaUSA
  3. 3.Department of Biological Sciences and Merriam-Powell Center for Environmental ResearchNorthern Arizona UniversityFlagstaffUSA
  4. 4.Smithsonian Environmental Research CenterEdgewaterUSA

Personalised recommendations