Journal of Chemical Ecology

, Volume 31, Issue 8, pp 1829–1843 | Cite as

Responses of Flea Beetle Phyllotreta cruciferae to Synthetic Aggregation Pheromone Components and Host Plant Volatiles in Field Trials

  • Juliana J. SorokaEmail author
  • Robert J. Bartelt
  • Bruce W. Zilkowski
  • Allard A. Cossé


Male-specific compounds, previously identified from Phyllotreta cruciferae and synthesized or isolated from natural sources, attracted both sexes of the beetle in field trials and therefore function as components of a male-produced aggregation pheromone. Six field experiments of 7 to 10 d duration each were conducted over 2 yr using modified boll weevil traps and two doses of pheromone. Treatments containing two doses of allyl isothiocyanate (AITC), a breakdown product of glucosinolates in Brassica napus L., a host plant of the beetles, were included in the study. A dose response was observed for both the pheromone components and AITC, and combinations of the pheromone and AITC generally attracted greater numbers of flea beetles than did either component itself. This increased attraction to a combination of beetle-produced compounds and host odors has not been previously demonstrated in halticine beetles and could help explain patterns of movement by P. cruciferae into field crops.

Key Words

Phyllotreta cruciferae crucifer-feeding flea beetle aggregation pheromone Chrysomelidae: Alticinae field trials kairomone 



We thank the Saskatchewan Association of Rehabilitation Centres SARCAN Recycling for donation of the trap tops and the University of Saskatchewan Crop Development Centre for use of test sites. The technical help of Larry Grenkow and Jennifer Holowachuk is greatly appreciated.


  1. Analytical Software. 2003. Statistix® Version 8.0 User’s Manual. Analytical Software, Tallahassee, FL.Google Scholar
  2. Bartelt, R. J. 1999Sap beetlesHardie, R. J.Minks, A. K. eds. Pheromones of Non-Lepidopteran Insects Associated with Agricultural PlantsCAB InternationalWallingford, UK6989Google Scholar
  3. Bartelt, R. J., CossÉ, A. A., Zilkowski, B. W., Weisleder, D., Momany, F. A. 2001Male-specific sesquiterpenes from Phyllotreta and Aphthona flea beetlesJ. Chem. Ecol.2723972423Google Scholar
  4. Bartelt, R. J., Weisleder, D., Momany, F. A. 2003Total synthesis of himachalene sesquiterpenes of Aphthona and Phyllotreta flea beetlesSynthesis2003117123Google Scholar
  5. Borden, J. H. 1985Aggregation pheromonesKerkut, G. A.Gilbert, L. I. eds. Comprehensive Insect Physiology and Pharmacology, Vol. 9Pergamon PressOxford, UK257283Google Scholar
  6. Burgess, L. 1977Flea beetles (Coleoptera: Chrysomelidae) attacking rape crops in the Canadian prairie provincesCan. Entomol.1092132Google Scholar
  7. Chew, F. S. 1988Biological effects of glucosinolatesCutler, H. G. eds. Biologically Active Natural Products: Potential Uses in AgricultureAmerican Chemical SocietyWashington, DC155181Google Scholar
  8. Cossé, A. A., Bartelt, R. J., Zilkowski, B. W. 2002Identification and electrophysiological activity of a novel hydroxy ketone emitted by male cereal leaf beetlesJ. Nat. Prod.6511561160Google Scholar
  9. Dickens, J. C., Oliver, J. E., Hollister, B., Davis, J. C., Klun, J. A. 2002Breaking a paradigm: male-produced aggregation pheromone for the Colorado potato beetleJ. Exp. Biol.20519251933Google Scholar
  10. Feeny, P., Paauwe, K. L., Demong, N. J. 1970Flea beetles and mustard oils: Host plant specificity of Phyllotreta cruciferae and P. striolata adults (Coleoptera: Chrysomelidae)Ann. Entomol. Soc. Am.63832841Google Scholar
  11. Knodel, J. J. and Olson, D. L. 2002. Crucifer flea beetle biology and integrated pest management in canola. North Dakota State University Extension Service Bulletin E-1234. 8 p.Google Scholar
  12. Krysan, J. L., McDonald, I. C., Tumlinson, J. H. 1989Phenogram based on allozymes and its relationship to classical biosystematics and pheromone structure among eleven Diabroticites (Coleoptera: Chrysomelidae)Ann. Entomol. Soc. Am.82574581Google Scholar
  13. Lamb, R. J. 1989Entomology of oilseed Brassica cropsAnnu. Rev. Entomol.34211229Google Scholar
  14. Lamb, R. J., Turnock, W. J. 1982Economics of insecticidal control of flea beetles (Coleoptera: Chrysomelidae) attacking rape in CanadaCan. Entomol.114827840Google Scholar
  15. Landolt, P. J., Phillips, T. W. 1997Host plant influences on sex pheromone behavior of phytophagous insectsAnnu. Rev. Entomol.42371391Google Scholar
  16. Louda, S., Mole, S. 1991Glucosinolates: chemistry and ecologyRosenthal, G. A.Berenbaum, M. R. eds. Herbivores: Their Interactions with Secondary Plant MetabolitesAcademic PressNew York123164Google Scholar
  17. McDonough, L. M. 1991. Controlled release of insect sex pheromones from a natural rubber substrate, pp. 106–124, in P. Hedin (ed.). Naturally Occurring Pest Bioregulators. American Chemical Society Symposium Series 449. Washington, DC.Google Scholar
  18. Mori, K. 1998. Semiochemicals: synthesis, stereochemistry, and bioactivity. Eur. J. Org. Chem. 1998:1479–1489.Google Scholar
  19. Muto, S., Bando, M., Mori, K. 2004Synthesis and stereochemistry of the four himachalene-type sesquiterpenes isolated from the flea beetle (Aphthona flava) as pheromone candidatesEur. J. Org. Chem.200419461952Google Scholar
  20. Peng, C., Weiss, M. J. 1992Evidence of an aggregation pheromone in the flea beetle Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae)J. Chem. Ecol.18875884Google Scholar
  21. Peng, C., Bartelt, R. J., Weiss, M. J. 1999Male crucifer flea beetles produce an aggregation pheromonePhysiol. Entomol.249899Google Scholar
  22. Pivnick, K. A., Jarvis, B. J. 1991Rate of release of allyl isothiocyanate by intact and damaged oriental mustard plants, and implications for host plant location by insectsG.C.I.R.C. Eighth International Rapeseed Congress2512517Google Scholar
  23. Pivnick, K. A., Lamb, R. J., Reed, D. 1992Response of flea beetles, Phyllotreta spp., to mustard oils and nitriles in field trapping experimentsJ. Chem. Ecol.18863873Google Scholar
  24. Rao, S., CossÉ, A. A., Zilkowski, B. W., Bartelt, R. J. 2003Aggregation pheromone of the cereal leaf beetle: Field evaluation and emission from males in the laboratoryJ. Chem. Ecol.2921652175Google Scholar
  25. SAS Institute. 2001. SAS for Windows Users Manual, Version 8.2. SAS Institute, Cary, NC.Google Scholar
  26. Steel, R. G. D., Torrie, J. H. 1980Principles and Procedures of Statistics: A Biometrical Approach2McGraw Hill Book Co.New York632 ppGoogle Scholar
  27. Vig, O. P., Chugh, O. P., Matta, K. L. 1970Terpenoids LIII. Synthesis of (±)-γ-cadineneIndian J. Chem.82932Google Scholar
  28. Vincent, C., Stewart, R. K. 1984Effect of allyl isothiocyanate on field behavior of crucifer-feeding flea beetles (Coleoptera: Chrysomelidae)J. Chem Ecol.103339Google Scholar
  29. Waite, D. T., Gurprasad, N. P., Sproull, J. F., Quiring, D. V., Kotylak, M. W. 2001Atmospheric movements of lindane (γ-hexachlorocyclohexane) from canola fields planted with treated seedJ. Environ. Qual.30768775Google Scholar
  30. Wylie, H. G. 1981Effects of collection method on estimates of parasitism and sex ratio of fleabeetles (Coleoptera: Chrysomelidae) that infest rape crops in ManitobaCan. Entomol.113665671Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Juliana J. Soroka
    • 1
    Email author
  • Robert J. Bartelt
    • 2
  • Bruce W. Zilkowski
    • 2
  • Allard A. Cossé
    • 2
  1. 1.Agriculture and Agri-Food CanadaSaskatoon Research CentreSaskatoonCanada
  2. 2.USDA Agricultural Research Service, National Center for Agricultural Utilization ResearchCrop Bioprotection Research UnitPeoriaUSA

Personalised recommendations