Skip to main content
Log in

Abstract

The aim of this paper is to construct invariant manifolds for a coupled system, consisting of a parabolic equation and a second-order ordinary differential equation, set on \(\mathbb {T}^3\) and subject to periodic boundary conditions. Notably, the “spectral gap condition" does not hold for the system under consideration, leading to the use of the spatial averaging principle, together with the graph transform method. This approach facilitates the construction of the relevant invariant manifold, characterized by attributes such as Lipschitz continuity, local invariance, infinite dimensionality, and exponential tracking, thus mirroring the properties traditionally associated with a classical global manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babin, A.V., Vishik, M.I.: Unstable invariant sets of semigroups of nonlinear operators and their perturbations. Uspekhi Mat. Nauk. 41(4), 3–34, 239 (1986)

  2. Bates, P.W., Jones, C.K.R.T.: Invariant manifolds for semilinear partial differential equations, Dynamics reported, Vol. 2, pp. 1-38, Dynam. Report. Ser. Dynam. Systems Appl. Wiley, Chichester (1989)

  3. Bates, P.W., Lu, K., Zeng, C.: Approximately invariant manifolds and global dynamics of spike states. Invent. Math. 174(2), 355–433 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bensoussan, A., Flandoli, F.: Stochastic inertial manifold. Stochastics Stochastics Rep. 53(1–2), 13–39 (1995)

  5. Chuan, L., Tsujikawa, T., Yagi, A.: Asymptotic behavior of solutions for forest kinematic model. Funkcial. Ekvac. 49(3), 427–449 (2006)

    Article  MathSciNet  Google Scholar 

  6. Chow, S.N., Lu, K.: Invariant manifolds for flows in Banach spaces. J. Differ. Equ. 74(2), 285–317 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  7. Cygan, S., Marciniak-Czochra, A., Karch, G., Suzuki, K.: Instability of all regular stationary solutions to reaction-diffusion-ODE systems. J. Differ. Equ. 337, 460–482 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  8. Debussche, A.: Inertial manifolds and Sacker’s equation. Differ. Integral Equ. 3(3), 467–486 (1990)

    MathSciNet  Google Scholar 

  9. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  Google Scholar 

  10. Duan, J., Lu, K., Schmalfuss, B.: Invariant manifolds for stochastic partial differential equations. Ann. Probab. 31(4), 2109–2135 (2003)

    Article  MathSciNet  Google Scholar 

  11. Efendiev, M.: Attractors for Degenerate Parabolic Type Equations. American Mathematical Society Providence, Rhode Island (2013)

    Book  Google Scholar 

  12. Efendiev, M., Zelik, S.: Global attractor and stabilization for a coupled PDE-ODE system, arXiv:1110.1837 (2011)

  13. Fabes, E., Luskin, M., Sell, G.R.: Construction of inertial manifolds by elliptic regularization. J. Differ. Equ. 89(2), 355–387 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  14. Foias, C., Nicolaenko, B., Sell, G.R., Temam, R.: Inertial manifolds for the Kuramoto–Sivashinsky equation and an estimate of their lowest dimensions. J. Math. Pures Appl. 67(3), 197–226 (1988)

    MathSciNet  Google Scholar 

  15. Foias, C., Sell, G.R., Temam, R.: Inertial manifolds for nonlinear evolutionary equations. J. Differ. Equ. 73(2), 309–353 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  16. Gal, C., Guo, Y.: Inertial manifolds for the hyperviscous Navier–Stokes equations. J. Differ. Equ. 265(9), 4335–4374 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. Hale, J., Lin, X.: Symbolic dynamics and nonlinear flows. Ann. Mat. Pura Appl. 144(4), 229–259 (1986)

    Article  MathSciNet  Google Scholar 

  18. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, New York (1981)

  19. Jerrold, M., Jũrgen, S.: The construction and smoothness of invariant manifolds by the deformation method. SIAM J. Math. Anal. 18(5), 1261–1274 (1987)

    Article  MathSciNet  Google Scholar 

  20. Jin, J., Lin, Z., Zeng, C.: Invariant manifolds of traveling waves of the 3D Gross–Pitaevskii equation in the energy space. Commun. Math. Phys. 364(3), 981–1039 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. Jolly, M.S.: Explicit construction of an inertial manifold for a reaction diffusion equation. J. Differ. Equ. 78(2), 220–261 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  22. Kostianko, A.: Inertial manifolds for semilinear parabolic equations which do not satisfy the spectral gap condition, Doctoral Thesis, University of Surrey (2017)

  23. Kostianko, A.: Inertial manifolds for the 3D modified-Leray-\(\alpha \) model with periodic boundary conditions. J. Dyn. Differ. Equ. 30(1), 1–24 (2018)

    Article  MathSciNet  Google Scholar 

  24. Kostianko, A., Zelik, S.: Inertial manifolds for the 3D Cahn–Hilliard equations with periodic boundary conditions. Commun. Pure Appl. Anal. 14(5), 2069–2094 (2015)

    Article  MathSciNet  Google Scholar 

  25. K\(\ddot{o}\)the, A., Marciniak-Czochra, A., Takagi, I.: Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete Contin. Dyn. Syst., 40(6), 3595–3627 (2020)

  26. Kuznetsov, Yu., Antonovsky, M., Biktashev, V., Aponina, A.: A cross-diffusion model of forest boundary dynamics. J. Math. Biol. 32, 219–232 (1994)

    Article  MathSciNet  Google Scholar 

  27. Li, X., Sun, C.: Inertial manifolds for the 3D modified-Leray-\(\alpha \) model. J. Differ. Equ. 268(4), 1532–1569 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. Liapounoff, A.M.: Probleme General de la Stabilite du Mouvement. Annals Math, vol. 17. Studies, Princeton, NJ (1948)

  29. Lin, Z., Zeng, C.: Unstable manifolds of Euler equations. Commun. Pure Appl. Math. 66(11), 1803–1836 (2013)

    Article  MathSciNet  Google Scholar 

  30. Lin, Z., Wang, Z., Zeng, C.: Stability of traveling waves of nonlinear Schrödinger equation with nonzero condition at infinity. Arch. Ration. Mech. Anal. 222(1), 143–212 (2016)

    Article  MathSciNet  Google Scholar 

  31. Mallet-Paret, J., Sell, G.R.: Inertial manifolds for reaction diffusion equations in higher space dimensions. J. Am. Math. Soc. 1(4), 805–866 (1988)

    Article  MathSciNet  Google Scholar 

  32. Marciniak-Czochra, A., Kimmel, M.: Modelling of early lung cancer progression: influence of growth factor production and cooperation between partially transformed cells. Math. Models Methods Appl. Sci. 17, 1693–1719 (2007)

    Article  MathSciNet  CAS  Google Scholar 

  33. Miklavcic, M.: A sharp condition for existence of an inertial manifold. J. Dyn. Differ Equ. 3(3), 437–456 (1991)

    Article  MathSciNet  Google Scholar 

  34. Nakata, H.: Numerical simulations for forest boundary dynamics model, Master’s Thesis, Osaka University (2004)

  35. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, No. 44, Springer, New York (1983)

  36. Perron, O.: Die Stabilit\(\ddot{a}\)tsfrage bei Differentialgleichungen. Math. Z. 32(1), 703–728 (1930)

    Article  MathSciNet  Google Scholar 

  37. Robinson, J.C.: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge Uuniversity Press, Cambridge (2001)

    Book  Google Scholar 

  38. Schlag, W.: Stable manifolds for an orbitally unstable nonlinear Schrödinger equation. Ann. Math. 169(2)(1), 139–227 (2009)

  39. Shao, Z.: Existence of inertial manifolds for partly dissipative reaction diffusion systems in higher space dimensions. J. Differ. Equ. 144(1), 1–43 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  40. Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer, Berlin (1997)

    Book  Google Scholar 

  41. Temam, R., Wang, S.: Inertial forms of Navier–Stokes equations on sphere. J. Funct. Anal. 117(1), 215–242 (1993)

    Article  MathSciNet  Google Scholar 

  42. Wanner, T.: Linearization Random Dynamical Systems, Dynamics Reported, Vol. 4, 203–269, Springer, New York (1995)

  43. Wells, J.: Invariant manifolds of nonlinear operators. Pac. J. Math. 62(1), 285–293 (1976)

    Article  Google Scholar 

  44. Zelik, S.: Inertial manifolds and finite-dimensional reduction for dissipative PDEs. Proc. R. Soc. Edinb. Sect. A 144(6), 1245–1327 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referees who significantly contributed to improve the initial version of the paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equally contributed to the article.

Corresponding author

Correspondence to Alain Miranville.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the National Nature Science Foundation of China grant (11501560) and was partially supported by the Cultivation Fund of Henan Normal University (No. 2020PL17), Henan Overseas Expertise Introduction Center for Discipline Innovation (No. CXJD2020003) and Key project of Henan Education Department (No. 22A110011).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Yin, K., Yang, XG. et al. Invariant Manifolds for a PDE-ODE Coupled System. J Dyn Diff Equat (2024). https://doi.org/10.1007/s10884-024-10353-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-024-10353-y

Keywords

Mathematics Subject Classification

Navigation