Skip to main content
Log in

Global Well-Posedness to the n-Dimensional Compressible Oldroyd-B Model Without Damping Mechanism

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We are concerned with the global well-posedness to the compressible Oldroyd-B model without a damping term in the stress tensor equation. By exploiting the intrinsic structure of the equations and introducing several new quantities for the density, the velocity and the divergence of the stress tensor, we overcome the difficulty of the lack of dissipation for the density and the stress tensor, and construct unique global solutions to this system with initial data in critical Besov spaces. As a byproduct, we obtain the optimal time decay rates of the solutions by using the pure energy argument. A similar result can be also proved for the compressible viscoelastic system without “div–curl" structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der mathematischen Wissenschaften, vol. 343. Springer-Verlag, Berlin (2011)

    Google Scholar 

  2. Barrett, J.W., Lu, Y., Süli, E.: Existence of large-data finite-energy global weak solutions to a compressible Oldroyd-B model. Commun. Math. Sci. 15, 1265–1323 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bird, R.B., Curtiss, C.F., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids. Fluid Mechanics, vol. 1, 2nd edn. Wiley, New York (1987)

    Google Scholar 

  4. Bollada, P.C., Phillips, T.N.: On the mathematical modelling of a compressible viscoelastic fluid. Arch. Ration. Mech. Anal. 205, 1–26 (2012)

    Article  MathSciNet  Google Scholar 

  5. Chemin, J.Y., Masmoudi, N.: About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal. 33, 84–112 (2001)

    Article  MathSciNet  Google Scholar 

  6. Chen, Q., Hao, X.: Global well-posedness in the critical Besov spaces for the incompressible Oldroyd-B model without damping mechanism. J. Math. Fluid Mech. 21, 23 (2019). (Paper No. 42)

    Article  MathSciNet  Google Scholar 

  7. Chen, Q., Miao, C.: Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces. Nonlinear Anal. 68, 1928–1939 (2008)

    Article  MathSciNet  Google Scholar 

  8. Chen, Q., Miao, C., Zhang, Z.: Global well-posedness for compressible Navier–Stokes equations with highly oscillating initial velocity. Commun. Pure Appl. Math. 63, 1173–1224 (2010)

    Article  MathSciNet  Google Scholar 

  9. Chen, Z., Zhai, X.: Global large solutions and incompressible limit for the compressible Navier–Stokes equations. J. Math. Fluid Mech. 21, 26 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  10. Constantin, P., Kliegl, M.: Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress. Arch. Ration. Mech. Anal. 206, 725–740 (2012)

    Article  MathSciNet  Google Scholar 

  11. Danchin, R., He, L.: The incompressible limit in \( L^p\) type critical spaces. Math. Ann. 366, 1365–1402 (2016)

    Article  MathSciNet  Google Scholar 

  12. Danchin, R., Xu, J.: Optimal time-decay estimates for the compressible Navier–Stokes equations in the critical \(L^{p}\) framework. Arch. Ration. Mech. Anal. 224, 53–90 (2017)

    Article  MathSciNet  Google Scholar 

  13. Elgindi, T.M., Liu, J.: Global wellposedness to the generalized Oldroyd type models in \({\mathbb{R} }^3\). J. Differ. Equ. 259, 1958–1966 (2015)

    Article  ADS  Google Scholar 

  14. Elgindi, T.M., Rousset, F.: Global regularity for some Oldroyd-B type models. Commun. Pure Appl. Math. 68, 2005–2021 (2015)

    Article  MathSciNet  Google Scholar 

  15. Fang, D., Zi, R.: Incompressible limit of Oldroyd-B fluids in the whole space. J. Differ. Equ. 256, 2559–2602 (2014)

    Article  MathSciNet  Google Scholar 

  16. Fang, D., Zi, R.: Global solutions to the Oldroyd-B model with a class of large initial data. SIAM J. Math. Anal. 48, 1054–1084 (2016)

    Article  MathSciNet  Google Scholar 

  17. Guillopé, C., Hakim, A., Talhouk, R.: Existence of steady flows of slightly compressible viscoelastic fluids of White-Metzner type around an obstacle. Commun. Pure Apppl. Anal. 4, 23–43 (2005)

    Article  MathSciNet  Google Scholar 

  18. Guillopé, C., Mneimné, A., Talhouk, R.: Asymptotic behaviour, with respect to the isothermal compressibility coefficient, for steady flows of weakly compressible viscoelastic fluids. Asympt. Anal. 35, 127–150 (2003)

    MathSciNet  Google Scholar 

  19. Guillopé, C., Salloum, Z., Talhouk, R.: Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discrete Contin. Dyn. Syst. Ser. B 14, 1001–1028 (2010)

    MathSciNet  Google Scholar 

  20. Guillopé, C., Saut, J.-C.: Résultats d’existence pour des fluides viscoélastiques à loi de comportement de type différentiel. C. R. Math. Acad. Sci. Paris 35, 489–492 (1987)

    Google Scholar 

  21. Guillopé, C., Saut, J.-C.: Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15, 849–869 (1990)

    Article  MathSciNet  Google Scholar 

  22. Guillopé, C., Saut, J.-C.: Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO Modél. Math. Anal. Numér. 24, 369–401 (1990)

    Article  MathSciNet  Google Scholar 

  23. Guillopé, C., Talhouk, R.: Steady flows of slightly compressible fluids of Jeffreys’ type around an obstacle. Differ. Integral Equ. 16, 1293–1320 (2003)

    MathSciNet  Google Scholar 

  24. Guo, Y., Wang, Y.J.: Decay of dissipative equations and negative Sobolev spaces. Commun. Partial Differ. Equ. 37, 2165–2208 (2012)

    Article  MathSciNet  Google Scholar 

  25. Haspot, B.: Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch. Ration. Mech. Anal. 202, 427–460 (2011)

    Article  MathSciNet  Google Scholar 

  26. Hu, X., Wang, D.: Global existence for the multi-dimensional compressible viscoelastic flows. J. Differ. Equ. 250, 1200–1231 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hu, X., Wu, G.: Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows. SIAM J. Math. Anal. 45, 2815–2833 (2013)

    Article  MathSciNet  Google Scholar 

  28. Lei, Z.: Global existence of classical solutions for some Oldroyd-B model via the incompressible limit. Chin. Ann. Math. Ser. B 27, 565–580 (2006)

    Article  MathSciNet  Google Scholar 

  29. Lei, Z., Liu, C., Zhou, Y.: Global solutions and incompressible viscoelastic fluids. Arch. Ration. Mech. Anal 188, 371–398 (2008)

    Article  MathSciNet  Google Scholar 

  30. Lei, Z., Masmoudi, N., Zhou, Y.: Remarks on the blowup criteria for Oldroyd models. J. Differ. Equ. 248, 328–341 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  31. Lei, Z., Zhou, Y.: Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit. SIAM J. Math. Anal. 37, 797–814 (2005)

    Article  MathSciNet  Google Scholar 

  32. Lin, F.: Some analytical issues for elastic complex fluids. Commun. Pure Appl. Math. 65, 893–919 (2012)

    Article  MathSciNet  Google Scholar 

  33. Lions, P.L., Masmoudi, N.: Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math. Ser. B 21, 131–146 (2000)

    Article  MathSciNet  Google Scholar 

  34. Liu, C., Walkington, N.: An Eulerian description of fluids containing visco-elastic particles. Arch. Ration. Mech. Anal. 159, 229–252 (2001)

    Article  MathSciNet  Google Scholar 

  35. Lu, Y., Zhang, Z.: Relative entropy, weak-strong uniqueness and conditional regularity for a compressible Oldroyd-B model. SIAM J. Math. Anal. 50, 557–590 (2018)

    Article  MathSciNet  Google Scholar 

  36. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  Google Scholar 

  37. Molinet, L., Talhouk, R.: On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law. NoDEA Nonlinear Differ. Equ. Appl. 11, 349–359 (2004)

    Article  MathSciNet  Google Scholar 

  38. Molinet, L., Talhouk, R.: Newtonian limit for weakly viscoelastic fluids flows of Oldroyd’s type. SIAM J. Math. Anal. 39, 1577–1594 (2008)

    Article  MathSciNet  Google Scholar 

  39. Oldroyd, J.: Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. R. Soc. Edinb. Sect. A 245, 278–297 (1958)

    ADS  MathSciNet  Google Scholar 

  40. Pan, X., Xu, J.: Global existence and optimal decay estimates of the compressible viscoelastic flows in \(L^p\) critical spaces. Discrete Contin. Dyn. Syst. Ser. A 39, 2021–2057 (2019)

    Article  Google Scholar 

  41. Pan, X., Xu, J., Zhu, Y.: Global existence of strong solutions to compressible viscoelastic flows without structure assumption. J. Diff. Equ. 331, 162–191 (2022)

    Article  ADS  Google Scholar 

  42. Ponce, G.: Global existence of small solution to a class of nonlinear evolution equations. Nonlinear Anal. TMA 9, 339–418 (1985)

    Article  MathSciNet  Google Scholar 

  43. Qian, J., Zhang, Z.: Global well-posedness for compressible viscoelastic fluids near equilibrium. Arch. Ration. Mech. Anal. 198, 835–868 (2010)

    Article  MathSciNet  Google Scholar 

  44. Renardy, M.: Local existence of solutions of the Dirichlet initial-boundary value problem for incompressible hypoelastic materials. SIAM J. Math. Anal. 21, 1369–1385 (1990)

    Article  MathSciNet  Google Scholar 

  45. Schowalter, W.R.: Mechanics of Non-Newtonian Fluids. Pergamon Press, Oxford (1978)

    Google Scholar 

  46. Talhouk, R.: Analyse Mathématique de Quelques Écoulements de Fluides Viscoélastiques. Université Paris-Sud, Thèse (1994)

    Google Scholar 

  47. Xin, Z., Xu, J.: Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions. J. Diff. Equ. 274, 543–575 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  48. Zhai, X.: Global solutions to the \(n\)-dimensional incompressible Oldroyd-B model without damping mechanism. J. Math. Phys. 62, 17 (2021). (Paper No. 021503)

    Article  MathSciNet  Google Scholar 

  49. Zhu, Y.: Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism. J. Funct. Anal. 274, 2039–2060 (2018)

    Article  MathSciNet  Google Scholar 

  50. Zhu, Y.: Global classical solutions of 3D compressible viscoelastic system near equilibrium. Calc. Var. 61(1), 21 (2022)

    Article  MathSciNet  Google Scholar 

  51. Zi, R.: Global solution in critical spaces to the compressible Oldroyd-B model with non-small coupling parameter. Discrete Contin. Dyn. Syst. Ser. A 37, 6437–6470 (2017)

    Article  MathSciNet  Google Scholar 

  52. Zi, R., Fang, D., Zhang, T.: Global solution to the incompressible Oldroyd-B model in the critical \(L^p\) framework: the case of the non-small coupling parameter. Arch. Ration. Mech. Anal. 213, 651–687 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Guangdong Provincial Natural Science Foundation under the grant number 2022A1515011977 and the Science and Technology Program of Shenzhen under the grant number 20200806104726001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Zhai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human Participants

This research dose not involved human participants and this article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, X., Chen, ZM. Global Well-Posedness to the n-Dimensional Compressible Oldroyd-B Model Without Damping Mechanism. J Dyn Diff Equat (2024). https://doi.org/10.1007/s10884-023-10346-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-023-10346-3

Keywords

Mathematics Subject Classification

Navigation