Skip to main content
Log in

Dichotomy Gap Conditions, Admissible Spaces, and Inertial Manifolds

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We study the existence of an inertial manifold for the fully non-autonomous evolution equation of the form

$$\begin{aligned} \frac{du}{dt} + A(t)u(t) = f(t,u),\, t\in \mathbb {R}, \end{aligned}$$

in certain admissible spaces. We prove the existence of such an inertial manifold in the cases that the family of linear partial differential operators \((A(t))_{t\in \mathbb {R}}\) generates an evolution family \((U(t,s))_{t\ge s}\) satisfying certain dichotomy estimates, and the nonlinear forcing term f(tx) satisfies the \(\varphi \)-Lipschitz condition, i.e., \(\left\| f(t,x_1)-f(t,x_2)\right\| \leqslant \varphi (t)\left\| A(t)^{\theta } (x_1-x_2)\right\| \), where \(\varphi (\cdot )\) belongs to some admissible function space such that certain dichotomy gap condition holds. This dichotomy gap condition, on the one hand, extends the spectral gap condition known in the case of autonomous equations, on the other hand, provides a chance to come over the restricted spectral gap condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Datasets for this research are included in the References.

References

  1. Acquistapace, P., Terreni, B.: A unified approach to abstract linear nonautonomous parabolic equations. Rend. Sem. Mat. Univ. Padova 78, 47–107 (1987)

    MathSciNet  MATH  Google Scholar 

  2. Acquistapace, P.: Evolution operators and strong solutions of abstract linear parabolic equations. Differ. Integr. Equ. 1, 433–457 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Bensoussan, A., Landoli, F.: Stochastic inertial manifolds. Stoch. Stoch. Rep. 53, 13–39 (1995)

    Article  MathSciNet  Google Scholar 

  4. Boutet de Monvel, L., Chueshov, I.D., Rezounenko, A.V.: Inertial manifolds for retarded semilinear parabolic equations. Nonlinear Anal. 34, 907–925 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calderón, A.P.: Spaces between \(L^1\) and \(L^\infty \) and the theorem of Marcinkiewicz. Stud. Math. 26, 273–299 (1966)

    Article  MATH  Google Scholar 

  6. Chueshov, I.D.: Approximate inertial manifolds of exponential order for semilinear parabolic equations subjected to additive white noise. J. Dyn. Diff. Equat. 7, 549–566 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chueshov, I.D.: Introduction to the Theory of Infinite-Dimensional Dissipative Systems, “ACTA” Scientific Publishing House, (2002)

  8. Chueshov, I.D., Scheutzow, M.: Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations. J. Dyn. Diff. Equat. 13, 355–380 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantin, P., Foias, C., Nicolaenko, B., Temam, R.: Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  10. Debussche, A., Temam, R.: Inertial manifolds and the slow manifolds in meteorology. Differ. Integr. Equ. 4, 897–931 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Debussche, A., Temam, R.: Inertial manifolds with delay. Appl. Math. Lett. 8, 21–24 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Debussche, A., Temam, R.: Some new generalizations of inertial manifolds. Discrete Contin. Dynam. Syst. 2, 543–558 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Foias, C., Sell, G.R., Temam, R.: Variétés inertielles des équations différentielles dissipatives. Comptes Rendus de l’Académie des Sciences Ser. I Math. 301, 139–142 (1985)

    MathSciNet  MATH  Google Scholar 

  14. Furuya, K., Yagi, A.: Linearized stability for abstract quasilinear equations of parabolic type. Funkcial. Ekvac. 37, 483–504 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math. 194, Springer (2000)

  16. Koksch, N., Siegmund, S.: Pullback attracting inertial manifols for nonautonomous dynamical systems. J. Dyn. Diff. Equat. 14, 889–941 (2002)

    Article  MATH  Google Scholar 

  17. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel (1995)

    Book  MATH  Google Scholar 

  18. Koksch, N., Siegmund, S.: Feedback control via inertial manifolds for nonautonomous evolution equations. Commun. Pure Appl. Anal. 10(3), 917–936 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kwak, M.: Finite dimensional description of convective reaction-diffusion equations. J. Dyn. Diff. Equat. 4, 515–543 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kwak, M.: Finite-dimensional inertial forms for the 2D Navier–Stokes equations. Indiana Univ. Math. J. 41(4), 927–981 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II: Function Spaces. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  22. Linot, A.J., Graham, M.D.: Deep learning to discover and predict dynamics on an inertial manifold. Phys. Rev. E 101(6), 8 (2020)

    Article  MathSciNet  Google Scholar 

  23. Minh, N.V., Räbiger, F., Schnaubelt, R.: Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line. Integr. Equ. Oper. Theory 32, 332–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  25. Nagel, R., Nickel, G.: Well-posedness for non-autonomous abstract Cauchy problems. Progr. Nonlinear Differ. Equ. Appl. 50, 279–293 (2002)

    MATH  Google Scholar 

  26. Massera, J.L., Schäffer, J.J.: Linear Differential Equations and Function Spaces. Academic Press, New York (1966)

    MATH  Google Scholar 

  27. Nguyen, T.H.: Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line. J. Funct. Anal. 235, 330–354 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nguyen, T.H., Pham, T.X., Vu, T.N.H., Vu, T.T.H.: Inertial manifolds for parabolic differential equations: the fully nonautonomous case. Commun. Pure Appl. Anal. 21, 943–958 (2022)

  29. Nguyen, T.H.: Inertial manifolds for semi-linear parabolic equations in admissible spaces. J. Math. Anal. Appl. 386, 894–909 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nguyen, T.H.: Admissibly inertial manifolds for a class of semi-linear evolution equations. J. Differ. Equ. 254, 2638–2660 (2013)

  31. Nguyen, T.H., Bui, X.-Q.: Competition models with diffusion, analytic semigroups, and inertial manifolds. Math. Methods Appl. Sci. 41(17), 8182–8200 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pazy, A.: Semigroup of Linear Operators and Application to Partial Differential Equations. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  33. Räbiger, F., Schnaubelt, R.: The spectral mapping theorem for evolution semigroups on spaces of vector-valued functions. Semigroup Forum 48, 225–239 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rosa, R., Temam, R.: Inertial manifolds and normal hyperbolicity. Acta Appl. Math. 45(1), 1–50 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rosa, R., Temam, R.: Finite-dimensional feedback control of a scalar reaction-diffusion equation via inertial manifold theory. In: Foundations of Computational Mathematics—Selected Papers of a Conference Held at Rio de Janeiro, 1997 (Editors: Felipe Cucker, Michael Shub), 382–391

  36. Rosa, R.: Exact finite dimensional feedback control via inertial manifold theory with application to the Chafee-Infante equation. J. Dyn. Diff. Equat. 15(1), 61–86 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schnaubelt, R.: Exponential bounds and hyperbolicity of evolution families, PhD thesis, Tübingen, (1996)

  38. Schnaubelt, R.: Exponential Dichotomy of Non-autonomous Evolution Equations. Habilitationsschrift, Tübingen (1999)

    MATH  Google Scholar 

  39. Sell, G.R.: Inertial manifolds: the non-self-adjoint case. J. Differ. Equ. 96, 203–255 (1992)

    Article  MATH  Google Scholar 

  40. Sell, G.R., You, Y.: Dynamics of Evolutionary Equations, Appl. Math. Sci., vol. 143, Springer-Verlag, (2002)

  41. Takagi, S.: Smoothness of inertial manifolds for semilinear evolution equations in complex Banach spaces. Differ. Integr. Equ. 21, 63–80 (2008)

    MathSciNet  MATH  Google Scholar 

  42. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  43. Triebel, H.: Interpolation Theory. Function Spaces, Differential Operators, North-Holland, Amsterdam, New York, Oxford (1978)

  44. You, Y.: Inertial manifolds and stabilization in nonlinear elastic systems with structural damping: Collection: Differential Equations with Applications to Mathematical Physics. Math. Sci. Eng. 192, 335–346 (1993)

    Article  Google Scholar 

  45. Zelik, S.: Inertial manifolds and finite-dimensional reduction for dissipative PDEs. Proc. R. Soc. Edinburgh Sect. A Math. 144(6), 1245–1327 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 101.02-2021.04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thieu Huy Nguyen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.H., Vu, T.N.H. Dichotomy Gap Conditions, Admissible Spaces, and Inertial Manifolds. J Dyn Diff Equat (2023). https://doi.org/10.1007/s10884-023-10320-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-023-10320-z

Keywords

Mathematics Subject Classification

Navigation