Skip to main content
Log in

Abstract

For a nonautonomous dynamics with discrete time depending on a parameter, we construct normal forms that have the same regularity as the original dynamics. A principal difficulty is that the resonances may depend on the parameter. The proof consists of three main elements that are interesting in their own right. First, we show that the spectrum of a nonautonomous linear dynamics does not vary much under perturbations. Second, we use this perturbation result to reduce the linear dynamics to a block-diagonal form with respect to a splitting that is independent of the parameter. Finally, we show that the normal forms are as regular as the original dynamics provided that the resonance conditions are relaxed to allow a certain spectral gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Aulbach, B., Siegmund, S.: A spectral theory for nonautonomous difference equations. In: New Trends in Difference Equations (Temuco, 2000), pp. 45–55. Taylor & Francis, London (2002)

  2. Barreira, L., Valls, C.: Smooth robustness of exponential dichotomies. Proc. Am. Math. Soc. 139, 999–1012 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barreira, L., Valls, C.: Spectrum of a nonautonomous dynamics for growth rates. Publ. Math. Debrecen 91, 43–62 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barreira, L., Valls, C.: Normal forms via nonuniform hyperbolicity. J. Differ. Equ. 266, 2175–2213 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barreira, L., Valls, C.: Regularity of normal forms on parameters. Milan J. Math. 90, 1–15 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chow, S.-N., Leiva, H.: Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces. J. Differ. Equ. 120, 429–477 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coppel, W.: Dichotomies and reducibility. J. Differ. Equ. 3, 500–521 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dalec’kiĭ, J., Kreĭn, M.: Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs 43. Amer Math Soc, Providence (1974)

    Google Scholar 

  9. Flanders, H., Wimmer, H.: On the matrix equations \(AX-XB=C\) and \(AX-YB=C\). SIAM J. Appl. Math. 32, 707–710 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Johnson, R., Sell, G.: Smoothness of spectral subbundles and reducibility of quasiperiodic linear differential systems. J. Differ. Equ. 41, 262–288 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kučera, V.: The matrix equation \(AX+XB=C\). SIAM J. Appl. Math. 26, 15–25 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Massera, J., Schäffer, J.: Linear differential equations and functional analysis. I. Ann. Math. (2) 67, 517–573 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  13. Naulin, R., Pinto, M.: Admissible perturbations of exponential dichotomy roughness. Nonlinear Anal. 31, 559–571 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Palmer, K.: Transversal heteroclinic points and Cherry’s example of a nonintegrable Hamiltonian system. J. Differ. Equ. 65, 321–360 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Papaschinopoulos, G.: Exponential separation, exponential dichotomy, and almost periodicity of linear difference equations. J. Math. Anal. Appl. 120, 276–287 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Perron, O.: Die Stabilitätsfrage bei Differentialgleichungen. Math. Z. 32, 703–728 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pliss, V., Sell, G.: Robustness of exponential dichotomies in infinite-dimensional dynamical systems. J. Dyn. Differ. Equ. 11, 471–513 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sacker, R., Sell, G.: A spectral theory for linear differential systems. J. Differ. Equ. 27, 320–358 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Siegmund, S.: Block diagonalization of linear difference equations. J. Differ. Equ. Appl. 8, 177–189 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Siegmund, S.: Normal forms for nonautonomous difference equations. Comput. Math. Appl. 45, 1059–1073 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Sternberg, S.: Local contractions and a theorem of Poincaré. Am. J. Math. 79, 809–824 (1957)

    Article  MATH  Google Scholar 

  22. Sternberg, S.: On the structure of local homeomorphisms of euclidean \(n\)-space. II. Am. J. Math. 80, 623–631 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yi, Y.: A generalized integral manifold theorem. J. Differ. Equ. 102, 153–187 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Supported by FCT/Portugal through CAMGSD, IST-ID, projects UIDB/04459/2020 and UIDP/04459/2020.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the conception and writing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luís Barreira.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreira, L., Valls, C. Nonautonomous Normal Forms with Parameters. J Dyn Diff Equat (2023). https://doi.org/10.1007/s10884-023-10315-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-023-10315-w

Keywords

Mathematics Subject Classification

Navigation