Skip to main content
Log in

Coherent Structures in Nonlocal Systems: Functional Analytic Tools

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We develop tools for the analysis of fronts, pulses, and wave trains in spatially extended systems with nonlocal coupling. We first determine Fredholm properties of linear operators, thereby identifying pointwise invertibility of the principal part together with invertibility at spatial infinity as necessary and sufficient conditions. We then build on the Fredholm theory to construct center manifolds for nonlocal spatial dynamics under optimal regularity assumptions, with reduced vector fields and phase space identified a posteriori through the shift on bounded solutions. As an application, we establish uniqueness of small periodic wave trains in a Lyapunov center theorem using only \(C^1\)-regularity of the nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

This declaration is not applicable.

References

  1. Abraham, R., Robbin, J.: Transversal mappings and flows. W. A. Benjamin, Inc., New York-Amsterdam, (1967). An appendix by Al Kelley

  2. Alfimov, G.L., Eleonsky, V.M., Kulagin, N.E.: Dynamical systems in the theory of solitons in the presence of nonlocal interactions. Chaos 2(4), 565–570 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, T., Faye, G., Scheel, A., Stauffer, D.: Pinning and unpinning in nonlocal systems. J. Dyn. Differ. Equ. 28(3–4), 897–923 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bakker, B., Scheel, A.: Spatial Hamiltonian identities for nonlocally coupled systems. Forum Math. Sigma 6, 55 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bakker, B. H., Berg, J. B. V. D.: Large fronts in nonlocally coupled systems using conley-floer homology. arXiv preprint arXiv:1907.03861, (2019)

  6. Berner, R., Polanska, A., Schöll, E., Yanchuk, S.: Solitary states in adaptive nonlocal oscillator networks. Eur. Phys. J. Spec. Top. 229(12), 2183–2203 (2020)

    Article  Google Scholar 

  7. Buzzi, C.A., Lamb, J.S.W.: Reversible Hamiltonian Liapunov center theorem. Discrete Contin. Dyn. Syst. Ser. B 5(1), 51–66 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Cabré, X., Roquejoffre, J.-M.: Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire. C. R. Math. Acad. Sci. Paris 347(23–24), 1361–1366 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chiba, H.: A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model. Ergodic Theory Dyn. Syst. 35(3), 762–834 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chiba, H., Medvedev, G.S.: The mean field analysis of the Kuramoto model on graphs I. The mean field equation and transition point formulas. Discrete Contin. Dyn. Syst. 39(1), 131–155 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chiba, H., Medvedev, G.S., Mizuhara, M.S.: Bifurcations in the Kuramoto model on graphs. Chaos 28(7), 073109 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Devaney, R.L.: Reversible diffeomorphisms and flows. Trans. Am. Math. Soc. 218, 89–113 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Silva, F.A.D.S., Viana, R.L., Prado, T.D.L., Lopes, S.R.: Characterization of spatial patterns produced by a Turing instability in coupled dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 19(4), 1055–1071 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Du, Y., Hsu, S.-B.: On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth. SIAM J. Math. Anal. 42(3), 1305–1333 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. ElBialy, M.S.: \(C^k\) invariant manifolds for maps of Banach spaces. J. Math. Anal. Appl. 268(1), 1–24 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Faye, G.: Existence and stability of traveling pulses in a neural field equation with synaptic depression. SIAM J. Appl. Dyn. Syst. 12(4), 2032–2067 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Faye, G., Holzer, M.: Modulated traveling fronts for a nonlocal Fisher-KPP equation: a dynamical systems approach. J. Differ. Equ. 258(7), 2257–2289 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Faye, G., Scheel, A.: Fredholm properties of nonlocal differential operators via spectral flow. Indiana Univ. Math. J. 63(5), 1311–1348 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Faye, G., Scheel, A.: Center manifolds without a phase space. Trans. Am. Math. Soc. 370(8), 5843–5885 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Faye, G., Scheel, A.: Corrigendum to "Center manifolds without a phase space", (2020)

  21. Gallay, T.: A center-stable manifold theorem for differential equations in Banach spaces. Commun. Math. Phys. 152(2), 249–268 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gopal, R., Chandrasekar, V., Venkatesan, A., Lakshmanan, M.: Observation and characterization of chimera states in coupled dynamical systems with nonlocal coupling. Phys. Rev. E 89(5), 052914 (2014)

    Article  Google Scholar 

  23. Henry, D.: Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

  24. Hur, V.M.: On the formation of singularities for surface water waves. Commun. Pure Appl. Anal. 11(4), 1465–1474 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Iooss, G., Pérouème, M.-C.: Perturbed homoclinic solutions in reversible \(1:1\) resonance vector fields. J. Differ. Equ. 102(1), 62–88 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jaramillo, G.: Rotating spirals in oscillatory media with nonlocal interactions and their normal form. Discrete Continu. Dyn. Syst. S (2022)

  27. Kelley, A.: The stable, center-stable, center, center-unstable, unstable manifolds. J. Differ. Equ. 3, 546–570 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kirchgässner, K.: Wave-solutions of reversible systems and applications. J. Differ. Equ. 45(1), 113–127 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, J., Shi, Y.: The Liapunov center theorem for a class of equivariant Hamiltonian systems. Abstr. Appl. Anal. pages Art. ID 530209, 12 (2012)

  30. Mallet-Paret, J.: The Fredholm alternative for functional-differential equations of mixed type. J. Dyn. Differ. Equ. 11(1), 1–47 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Méléard, S., Mirrahimi, S.: Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity. Commun. Partial Differ. Equ. 40(5), 957–993 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Palmer, K.J.: Exponential dichotomies and Fredholm operators. Proc. Am. Math. Soc. 104(1), 149–156 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Palmer, T.N.: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Q. J. R. Meteorol. Soc. 127(572), 279–304 (2001)

    Google Scholar 

  34. Robbin, J., Salamon, D.: The spectral flow and the Maslov index. Bull. Lond. Math. Soc. 27(1), 1–33 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sandstede, B., Theerakarn, T.: Regularity of center manifolds via the graph transform. J. Dyn. Differ. Equ. 27(3–4), 989–1006 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Scheel, A., Tao, T.: Bifurcation to coherent structures in nonlocally coupled systems. J. Dyn. Diff. Equ. 31(3), 1107–1127 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schmidt, D.S.: Hopf’s bifurcation theorem and the center theorem of Liapunov with resonance cases. J. Math. Anal. Appl. 63(2), 354–370 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schwarz, M.: Morse homology. Progress in Mathematics, vol. 111. Birkhäuser Verlag, Basel (1993)

  39. Seleson, P., Parks, M.L., Gunzburger, M., Lehoucq, R.B.: Peridynamics as an upscaling of molecular dynamics. Multiscale Model. Simul. 8(1), 204–227 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tanaka, D., Kuramoto, Y.: Complex Ginzburg-Landau equation with nonlocal coupling. Phys. Rev. E 68(2), 026219 (2003)

    Article  Google Scholar 

  41. Tang, X.-Y., Liang, Z.-F., Hao, X.-Z.: Nonlinear waves of a nonlocal modified KdV equation in the atmospheric and oceanic dynamical system. Commun. Nonlinear Sci. Numer. Simul. 60, 62–71 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Truong, T., Wahlén, E., Wheeler, M.: Global bifurcation of solitary waves for the Whitham equation. Math. Ann. (2021)

  43. Vanderbauwhede, A., van Gils, S.A.: Center manifolds and contractions on a scale of Banach spaces. J. Funct. Anal. 72(2), 209–224 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yonker, S., Wackerbauer, R.: Nonlocal coupling can prevent the collapse of spatiotemporal chaos. Phys. Rev. E 73(2), 026218 (2006)

    Article  Google Scholar 

  45. Zhou, Z.-G., Wu, L.-Z., Du, S.-Y.: Non-local theory solution for a mode I crack in piezoelectric materials. Eur. J. Mech. A. Solids 25(5), 793–807 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors acknowledge partial support through Grants NSF DMS-1907391 and NSF DMS-2205663.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript.

Corresponding author

Correspondence to Olivia Cannon.

Ethics declarations

Ethical Approval

This declaration is not applicable.

Conflict of interest

The authors declare that they have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors acknowledge partial support through Grant NSF DMS-1907391.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cannon, O., Scheel, A. Coherent Structures in Nonlocal Systems: Functional Analytic Tools. J Dyn Diff Equat (2023). https://doi.org/10.1007/s10884-023-10290-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-023-10290-2

Keywords

Navigation