Skip to main content
Log in

Threshold Dynamics for Infection Age-Structured Epidemic Models with Spatial Diffusion and Degenerate Diffusion

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper is devoted to studying the threshold dynamics for infection age-structured epidemic models with non-degenerate diffusion and degenerate diffusion. For general infection age-structured epidemic models with non-degenerate diffusion, we establish the basic reproduction number \(R_0\) by using non-densely defined operators and prove that \(R_0\) equals the spectral radius of \(-{\mathscr {F}}{\mathscr {A}}^{-1}\). For a class of infection age-structured epidemic models with non-degenerate diffusion or degenerate diffusion, we give a general method to prove that \(R_0\) plays the role of the threshold for the extinction or persistence of the disease. Finally, we apply our methods to the infection age-structured SIR, SEIR epidemic models and obtain the threshold results on their global dynamics. Our results on \(R_0\) for the general infection age-structured epidemic models extend the cases of ODE and reaction–diffusion epidemic models. In addition, our method in this paper improves some previous results and is applicable to the Neumann, Dirichlet, and Robin boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data was used in this manuscript.

References

  1. Alikakos, N.D.: An application of the invariance principle to reaction–diffusion equations. J. Differ. Equ. 33, 201–225 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Birkhauser, Basel (2001)

    Book  MATH  Google Scholar 

  3. Bai, X., He, X.: Asymptotic behavior of the principal eigenvalue for cooperative periodic-parabolic systems and applications. J. Differ. Equ. 11, 9868–9903 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Busenberg, S.N., Iannelli, M., Thieme, H.R.: Global behavior of an age-structured epidemic model. SIAM J. Math. Anal. 22, 1065–1080 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chekroun, A., Kuniya, T.: Global threshold dynamics of an infection age-structured SIR epidemic model with diffusion under the Dirichlet boundary condition. J. Differ. Equ. 269, 117–148 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chekroun, A., Kuniya, T.: An infection age-space structured SIR epidemic model with Neumann boundary condition. Appl. Anal. 11, 1972–1985 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Chekroun, A., Kuniya, T.: An infection age-space-structured SIR epidemic model with Dirichlet boundary condition. Math. Model. Nat. Phenom. 14, 505 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chicone, C., Latushkin, Y.: Evolution Semigroups in Dynamical Systems and Differential Equations. Math. Surveys Monogr., vol. 70, Amer. Math. Soc., Providence (1999)

  9. Demasse, R.D., Ducrot, A.: An age-structured within-host model for multistrain malaria infections. SIAM J. Appl. Math. 73, 572–593 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

  11. Diagne, M.L., Seydi, O., Sy, A.B.: A two-group age of infection epidemic model with periodic behavioral changes. Discrete Contin. Dyn. Syst. Ser. B 25(6), 2057–2092 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Ducrot, A., Magal, P.: Travelling wave solutions for an infection-age structured model with diffusion. Proc. R. Soc. Edinb. A 139, 459–482 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ducrot, A., Magal, P.: Travelling wave solutions for an infection-age structured epidemic model with external supplies. Nonlinearity 24, 2891–2911 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ducrot, A., Magal, P., Ruan, S.: Travelling wave solutions in multigroup age-structured epidemic models. Arch. Ration. Mech. Anal. 195, 311–331 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feng, Z., Huang, W., Castillo-Chavez, C.: Global behavior of a multi-group SIS epidemic model with age structure. J. Differ. Equ. 218, 292–324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guiver, C.: On the strict monotonicity of spectral radii for classes of bounded positive linear operators. Positivity 22, 1173–1190 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hadwin, D.W., Kitover, A.K., Orhon, M.: Strong monotonicity of spectral radius of positive operators. Houston J. Math. 41, 553–570 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. Mathematical Surveys Monographs, vol. 25. American Mathematical Society, Providence (1988)

  19. Hale J.K.: Dissipation and attractors. In: Fiedler, Groeger and Sprekels (Eds.) International Conference on Differential Equations, (Berlin 1999), World Scientific (2000)

  20. Hess, P.: Periodic-Parabolic Boundary Value Problems and Positivity. Longman Scientific and Technical (1991)

  21. Inaba, H.: Endemic threshold results in an age-duration-structured population model for HIV infection. Math. Biosci. 201(1–2), 15–47 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Inaba, H.: The basic reproduction number \(R_0\) in time-heterogeneous environments. J. Math. Biol. 79, 731–764 (2019)

  23. Jin, M., Lin, Y., Pei, M.: Asymptotic behavior of a regime-switching SIR epidemic model with degenerate diffusion. Adv. Differ. Equ. 84 (2018)

  24. Kato, T.: Perturbation Theory for Linear Operators. Springer-Verlag, Berlin (1976)

    MATH  Google Scholar 

  25. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115, 700–721 (1927)

    Article  MATH  Google Scholar 

  26. Kubo, M., Langlais, M.: Periodic solutions for nonlinear population dynamics models with age-dependence and spatial structure. J. Differ. Equ. 109, 274–294 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuniya, T.: Global behavior of a multi-group SIR epidemic model with age structure and an application to the chlamydia epidemic in Japan. SIAM J. Appl. Math. 79, 321–340 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kuniya, T., Wang, J., Inaba, H.: A multi-group SIR epidemic model with age structure. Discret. Contin. Dyn. Syst. Ser. B 21(10), 3515–3550 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liang, X., Zhang, L., Zhao, X.-Q.: The principal eigenvalue for degenerate periodic reaction–diffusion systems. SIAM J. Math. Anal. 49, 3603–3636 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liang, X., Zhang, L., Zhao, X.-Q.: The principal eigenvalue for periodic nonlocal dispersal systems with time delay. J. Differ. Equ. 266, 2100–2124 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lou, Y., Zhao, X.-Q.: A reaction–diffusion malaria model with incubation period in the vector population. J. Math. Biol. 62, 543–568 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mu, X., Jiang, D., Alsaedi, A.: Analysis of a stochastic phytoplankton–zooplankton model under non-degenerate and degenerate diffusions. J. Nonlinear Sci. 32, 35 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  33. Magal, P., Ruan, S.: Theory and Applications of Abstract Semilinear Cauch Problems. Applied Mathematical Sciences, Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  34. Magal, P., Ruan, S.: On integrated semigroups and age structured models in \(L^p\) spaces. Differ. Int. Equ. 20, 197–239 (2007)

  35. Magal, P., Ruan, S.: On semilinear Cauchy problems with non-dense domain. Adv. Differ. Equ. 14, 1041–1084 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Magal, P., McCluskey, C.C., Webb, G.F.: Lyapunov functional and global asymptotic stability for an infection-age model. Appl. Anal. 89, 1109–1140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Magal, P., Seydi, O., Wang, F.: Monotone abstract non-densely defined Cauchy problems applied to age structured population dynamic models. J. Math. Anal. Appl. 479, 450–481 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Magal, P., Zhao, X.-Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM J. Math. Anal. 37, 251–275 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Magal, P., Mccluskey, C.: Two-group infection age model including an application to nosocomial infection. SIAM J. Appl. Math. 73, 1058–1095 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Marek, I.: Frobenius theory of positive operators: comparison theorems and applications. SIAM J. Appl. Math. 19(3), 607–628 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nussbaum, R.D.: Eigenvectors of nonlinear positive operators and the linear Krein–Rutman theorem. In: Fadell, E., Fournier, G. (eds.) Fixed Point Theory. Lecture Notes Mathematics, vol. 886, pp. 309–330. Springer, Berlin (1981)

    Chapter  Google Scholar 

  42. Pang, J., Chen, J., Liu, Z., Bi, P., Ruan, S.: Local and global stabilities of a viral dynamics model with infection-age and immune response. J. Dyn. Differ. Equ. 31, 793–813 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983)

    Book  MATH  Google Scholar 

  44. Qiang, L., Wang, B., Zhao, X.-Q.: Basic reproduction ratios for almost periodic compartmental models with time delay. J. Differ. Equ. 269, 4440–4476 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rebelo, C., Margheri, A., Bacaër, N.: Persistence in some periodic epidemic models with infection age or constant periods of infection. Discrete Contin. Dyn. Syst. Ser. B 19(4), 1155–1170 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Rudin, W.: Functional Analysis. McGraw-Hill Professional, New York (1991)

    MATH  Google Scholar 

  47. Schechter, M.: Principles of Functional Analysis, vol. 2. Academic Press, New York (1971)

    MATH  Google Scholar 

  48. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and Monographs 41. American Mathematical Society, Providence (1995)

  49. Smith, H.L., Thieme, H.R.: Dynamical Systems and Population Persistence. Grad. Stud. Math. 118, AMS, Providence (2011)

  50. Thieme, H.R.: Renewal theorems for linear discrete Volterra equations. J. Reine Angew. Math. 353, 55–84 (1984)

    MathSciNet  MATH  Google Scholar 

  51. Thieme, H.R.: Renewal theorems for linear periodic Volterra integral equations. J. Integral Equ. 7, 253–277 (1984)

    MathSciNet  MATH  Google Scholar 

  52. Thieme, H.R.: Semiflows generated by Lipschitz perturbations of non-densely defined operators. Differ. Int. Equ. 3, 1035–1066 (1990)

    MathSciNet  MATH  Google Scholar 

  53. Thieme, H.R.: Convergence results and a Poincare–Bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol. 30, 755–763 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  54. Thieme, H.R.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Tuerxun, N., Wen, B., Teng, Z.: The stationary distribution in a class of stochastic SIRS epidemic models with non-monotonic incidence and degenerate diffusion. Math. Comput. Simulation 182, 888–912 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  56. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wang, X., Sun, H., Yang, J.: Temporal-spatial analysis of an age-space structured foot-and-mouth disease model with Dirichlet boundary condition. Chaos 31, 053120 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wang, W., Zhao, X.-Q.: Basic reproduction numbers for reaction–diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11, 1652–1673 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  59. Wang, J., Liu, X., Kuniya, T., Pang, J.: Global stability for multi-group SIR and SEIR epidemic models with age-dependent susceptibility. Discret. Contin. Dyn. Syst. Ser. B 22, 2795–2812 (2017)

    MathSciNet  MATH  Google Scholar 

  60. Wang, C., Wang, J.: Analysis of a malaria epidemic model with age structure and spatial diffusion. Z. Angew. Math. Phys. 72, 74 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  61. Webb, G.F.: An age-dependent epidemic model with spatial diffusion. Arch. Ration. Mech. Anal. 75, 91–102 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  62. Yang, J., Xu, R., Li, J.: Threshold dynamics of an age-space structured brucellosis disease model with Neumann boundary condition. Nonlinear Anal. Real World Appl. 50, 192–217 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  63. Zhao, M., Zhang, Y., Li, W., Du, Y.: The dynamics of a degenerate epidemic model with nonlocal diffusion and free boundaries. J. Differ. Equ. 269, 3347–3386 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  64. Zhao, X.-Q.: Basic reproduction ratios for periodic compartmental models with time delay. J. Dyn. Differ. Equ. 29, 67–82 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  65. Zhao, X.-Q.: Dynamical Systems in Population Biology, 2nd edn. Springer-Verlag, New York (2017)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for many valuable comments which helped to improve the manuscript. This work was supported by the National Natural Science Foundation of China (No. 11771044, 12171039 and 11871007).

Author information

Authors and Affiliations

Authors

Contributions

JH, QH and RY wrote the mian manuscript text.

Corresponding author

Correspondence to Jiawei Huo.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interests.

Ethics Approval and Consent to Participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China (Nos. 11771044, 12171039 and 11871007).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, J., Huo, Q. & Yuan, R. Threshold Dynamics for Infection Age-Structured Epidemic Models with Spatial Diffusion and Degenerate Diffusion. J Dyn Diff Equat (2023). https://doi.org/10.1007/s10884-023-10288-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-023-10288-w

Keywords

Mathematics Subject Classification

Navigation