Skip to main content
Log in

Data-Driven Computational Methods for Quasi-Stationary Distribution and Sensitivity Analysis

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper studies computational methods for quasi-stationary distributions (QSDs). We first proposed a data-driven solver that solves Fokker–Planck equations for QSDs. Similar to the case of Fokker–Planck equations for invariant probability measures, we set up an optimization problem that minimizes the distance from a low-accuracy reference solution, under the constraint of satisfying the linear relation given by the discretized Fokker–Planck operator. Then we use coupling method to study the sensitivity of a QSD against either the change of boundary condition or the diffusion coefficient. The 1-Wasserstein distance between a QSD and the corresponding invariant probability measure can be quantitatively estimated. Some numerical results about both computation of QSDs and their sensitivity analysis are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agresti, A., Coull, B.A.: Approximate is better than “exact’’ for interval estimation of binomial proportions. Am. Stat. 52(2), 119–126 (1998)

    MathSciNet  Google Scholar 

  2. Anderson, W.J.: Continuous-Time Markov Chains: An Applications-Oriented Approach. Springer (2012)

  3. Barton, R. R., Schruben, L.W.: Uniform and bootstrap resampling of empirical distributions. In: Proceedings of the 25th Conference on Winter Simulation, pp. 503–508 (1993)

  4. Benaïm, M., Champagnat, N., Villemonais, D.: Stochastic approximation of quasi-stationary distributions for diffusion processes in a bounded domain. In: Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, vol. 57, pp. 726–739. Institut Henri Poincaré (2021)

  5. Benaim, M., Cloez, B., Panloup, F., et al.: Stochastic approximation of quasi-stationary distributions on compact spaces and applications. Ann. Appl. Probab. 28(4), 2370–2416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burdzy, K., Hołyst, R., March, P.: A fleming-viot particle representation of the dirichlet laplacian. Commun. Math. Phys. 214(3), 679–703 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cloez, B., Thai, M.-N.: Quantitative results for the fleming-viot particle system and quasi-stationary distributions in discrete space. Stoch. Process. Appl. 126(3), 680–702 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Collet, P., Martínez, S., San Martín, J.: Quasi-Stationary Distributions: Markov Chains, Diffusions and Dynamical Systems. Springer (2012)

  9. Darroch, J.N., Seneta, E.: On quasi-stationary distributions in absorbing discrete-time finite markov chains. J. Appl. Probab. 2(1), 88–100 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dobson, M., Li, Y., Zhai, J.: An efficient data-driven solver for fokker-planck equations: algorithm and analysis. Commun. Math. Sci. accepted (2021)

  11. Dobson, M., Li, Y., Zhai, J.: Using coupling methods to estimate sample quality of stochastic differential equations. SIAM/ASA J. Uncertain. Quantif. 9(1), 135–162 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferrari, P.A., Martínez, S., Picco, P.: Existence of non-trivial quasi-stationary distributions in the birth-death chain. Adv. Appl. Probab. 795–813 (1992)

  13. Hening, A., Li, Y.: Stationary distributions of persistent ecological systems. J. Math. Biol. 82(7), 1–53 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huillet, T.: On wright-fisher diffusion and its relatives. J. Stat. Mech. Theory Exp. 2007(11), P11006 (2007)

    Article  Google Scholar 

  15. Jacob, P.E., O’Leary, J., Atchadé, Y.F.: Unbiased markov chain monte carlo methods with couplings. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 82(3), 543–600 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Johndrow, J.E., Mattingly, J.C.: Error bounds for approximations of markov chains used in bayesian sampling. Preprint arXiv:1711.05382 (2017)

  17. Karatzas, I., Shreve, S.: Brownian motion and stochastic calculus, vol. 113. Springer (2014)

  18. Kloeden, P.E., Platen, E.: Stochastic differential equations. In: Numerical Solution of Stochastic Differential Equations, pp. 103–160. Springer (1992)

  19. Lai, Y.-C., Tél, T.: Transient Chaos: Complex Dynamics on Finite Time Scales, vol. 173. Springer (2011)

  20. Li, Y.: A data-driven method for the steady state of randomly perturbed dynamics. Commun. Math. Sci. 17(4) (2019)

  21. Li, Y., Wang, S.: Numerical computations of geometric ergodicity for stochastic dynamics. Nonlinearity 33(12), 6935 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Øksendal, B.: Stochastic differential equations. In: Stochastic Differential Equations, pp. 65–84. Springer (2003)

  23. Pilipenko, A.: An introduction to stochastic differential equations with reflection, vol. 1. Universitätsverlag Potsdam (2014)

  24. Van Doorn, E.A.: Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. Adv. Appl. Probab. 683–700 (1991)

  25. van Doorn, E.A., Schrijner, P.: Geomatric ergodicity and quasi-stationarity in discrete-time birth-death processes. ANZIAM J. 37(2), 121–144 (1995)

    MATH  Google Scholar 

  26. Villemonais, D.: Interacting particle systems and yaglom limit approximation of diffusions with unbounded drift. Electron. J. Probab. 16, 1663–1692 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yao Li is partially supported by NSF DMS-1813246 and DMS-2108628.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yuan, Y. Data-Driven Computational Methods for Quasi-Stationary Distribution and Sensitivity Analysis. J Dyn Diff Equat 35, 2069–2097 (2023). https://doi.org/10.1007/s10884-022-10137-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-022-10137-2

Keywords

Navigation