Skip to main content
Log in

Enabling Equation-Free Modeling via Diffusion Maps

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Equation-free modeling aims at extracting low-dimensional macroscopic dynamics from complex high-dimensional systems that govern the evolution of microscopic states. This algorithm relies on lifting and restriction operators that map macroscopic states to microscopic states and vice versa. Combined with simulations of the microscopic state, this algorithm can be used to apply Newton solvers to the implicitly defined low-dimensional macroscopic system or solve it more efficiently using direct numerical simulations. The key challenge is the construction of the lifting and restrictions operators that usually require a priori insight into the underlying application. In this paper, we design an application-independent algorithm that uses diffusion maps to construct these operators from simulation data. Code is available at https://doi.org/10.5281/zenodo.5793299.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The datasets generated and analysed during the current study are available in the Zenodo repository at https://doi.org/10.5281/zenodo.5793299.

References

  1. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51(2), 1035–1042 (1995)

    Article  ADS  CAS  Google Scholar 

  2. Beyn, W.J.: The numerical computation of connecting orbits in dynamical systems. IMA J. Numer. Anal. 10(3), 379–405 (1990). https://doi.org/10.1093/imanum/10.3.379

    Article  MathSciNet  Google Scholar 

  3. Brunovský, P.: Tracking invariant manifolds without differential forms. Acta Math. Univ. Comenian. (N.S.) 65(1), 23–32 (1996)

    MathSciNet  Google Scholar 

  4. Chiavazzo, E., Gear, C.W., Dsilva, C.J., Rabin, N., Kevrekidis, I.G.: Reduced models in chemical kinetics via nonlinear data-mining. Processes 2(1), 112–140 (2014)

    Article  CAS  Google Scholar 

  5. Coifman, R.R., Kevrekidis, I.G., Lafon, S., Maggioni, M., Nadler, B.: Diffusion maps, reduction coordinates, and low dimensional representation of stochastic systems. Multiscale Model. Simul. 7(2), 842–864 (2008)

    Article  MathSciNet  Google Scholar 

  6. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006)

    Article  MathSciNet  Google Scholar 

  7. Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B., Warner, F., Zucker, S.W.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl. Acad. Sci. USA 102(21), 7426–7431 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dsilva, C.J., Talmon, R., Coifman, R.R., Kevrekidis, I.G.: Parsimonious representation of nonlinear dynamical systems through manifold learning: a chemotaxis case study. Appl. Comput. Harmon. Anal. 6, 66 (2015)

    Google Scholar 

  9. Erban, R., Frewen, T.A., Wang, X., Elston, T.C., Coifman, R., Nadler, B., Kevrekidis, I.G.: Variable-free exploration of stochastic models: a gene regulatory network example. J. Chem. Phys. 126(15), 66 (2007)

    Article  Google Scholar 

  10. Frewen, T.A., Couzin, I.D., Kolpas, A., Moehlis, J., Coifman, R., Kevrekidis, I.G.: Coping with Complexity: Model Reduction and Data Analysis. Lecture Notes in Computational Science and Engineering, pp. 299–309 (2010). https://doi.org/10.1007/978-3-642-14941-2_16

  11. Jones, C.K.R.T.: Geometric singular perturbation theory. In: Dynamical Systems (Montecatini Terme, 1994), Lecture Notes in Mathematics, vol. 1609, pp. 44–118. Springer, Berlin (1995). https://doi.org/10.1007/BFb0095239

  12. Kattis, A.A., Holiday, A., Stoica, A.A., Kevrekidis, I.G.: Modeling epidemics on adaptively evolving networks: a data-mining perspective. Virulence 7(2), 153–162 (2016). https://doi.org/10.1080/21505594.2015.1121357

    Article  PubMed  Google Scholar 

  13. Kevrekidis, I.G., Gear, C.W., Hummer, G.: Equation-free: the computer-aided analysis of complex multiscale systems. Am. Inst. Chem. Eng. J. 50(7), 1346–1355 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Kevrekidis, I.G., Gear, C.W., Hyman, J.M., Kevrekidis, P.G., Runborg, O., Theodoropoulos, C., et al.: Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1(4), 715–762 (2003)

    Article  MathSciNet  Google Scholar 

  15. Kevrekidis, I.G., Samaey, G.: Equation-free multiscale computation: algorithms and applications. Annu. Rev. Phys. Chem. 60, 321–344 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Koelle, S., Zhang, H., Meila, M., Chen, Y.C.: Manifold coordinates with physical meaning. J. Mach. Learn. Res. 6, 66 (2021)

    Google Scholar 

  17. Kuehn, C.: Multiple Time Scale Dynamics, Applied Mathematical Sciences, vol. 191. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-12316-5

  18. Lafon, S.S.: Diffusion Maps and Geometric Harmonics. Ph.D. Thesis, Yale University (2004)

  19. Laing, C.R., Frewen, T.A., Kevrekidis, I.G.: Coarse-grained dynamics of an activity bump in a neural field model. Nonlinearity 20(9), 2127 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. Liu, P., Safford, H.R., Couzin, I.D., Kevrekidis, I.G.: Coarse-grained variables for particle-based models: diffusion maps and animal swarming simulations. Comput. Part. Mech. 1(4), 425–440 (2014)

    Article  Google Scholar 

  21. Marschler, C., Sieber, J., Berkemer, R., Kawamoto, A., Starke, J.: Implicit methods for equation-free analysis: convergence results and analysis of emergent waves in microscopic traffic models. SIAM J. Appl. Dyn. Syst. 13(3), 1202–1238 (2014)

    Article  MathSciNet  Google Scholar 

  22. Marschler, C., Starke, J., Liu, P., Kevrekidis, I.G.: Coarse-grained particle model for pedestrian flow using diffusion maps. Phys. Rev. E 89(1), 66 (2014)

    Article  Google Scholar 

  23. Rajendran, K., Kattis, A., Holiday, A., Kondor, R., Kevrekidis, I.G.: Data mining when each data point is a network. In: Gurevich, P., Hell, J., Sandstede, B., Scheel, A. (eds.) Patterns of Dynamics, pp. 289–317. Springer, Cham (2017)

    Chapter  Google Scholar 

  24. Siettos, C.I., Graham, M.D., Kevrekidis, I.G.: Coarse Brownian dynamics for nematic liquid crystals: Bifurcation, projective integration, and control via stochastic simulation. J. Chem. Phys. 118(22), 10149–10156 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Sonday, B.E., Haataja, M., Kevrekidis, I.G.: Coarse-graining the dynamics of a driven interface in the presence of mobile impurities: effective description via diffusion maps. Phys. Rev. E 80(3), 66 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Tracy Chin, Jacob Ruth, and Rebecca Santorella were supported by the NSF Grant DMS-1439786 through the Summer@ICERM program. Rebecca Santorella was also supported by the NSF through Grant 1644760. Bjorn Sandstede was supported by the NSF under Grants DMS-1408742, DMS-1714429 and CCF-1740741.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Sandstede.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In memory of Pavol Brunovský.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chin, T., Ruth, J., Sanford, C. et al. Enabling Equation-Free Modeling via Diffusion Maps. J Dyn Diff Equat 36 (Suppl 1), 415–434 (2024). https://doi.org/10.1007/s10884-021-10127-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-10127-w

Keywords

Mathematics Subject Classification

Navigation