Skip to main content
Log in

Sharp Decay Rates for Localized Perturbations to the Critical Front in the Ginzburg–Landau Equation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We revisit the nonlinear stability of the critical invasion front in the Ginzburg–Landau equation. Our main result shows that the amplitude of localized perturbations decays with rate \(t^{-3/2}\), while the phase decays diffusively. We thereby refine earlier work of Bricmont and Kupiainen as well as Eckmann and Wayne, who separately established nonlinear stability but with slower decay rates. On a technical level, we rely on sharp linear estimates obtained through analysis of the resolvent near the essential spectrum via a far-field/core decomposition which is well suited to accurately describing the dynamics of separate neutrally stable modes arising from far-field behavior on the left and right.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aronson, D., Weinberger, H.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30(1), 33–76 (1978)

    Article  MathSciNet  Google Scholar 

  2. Avery, M., Scheel, A.: Universal selection of pulled fronts. Preprint. arXiv:2012.06443 [math.AP]

  3. Avery, M., Scheel, A.: Asymptotic stability of critical pulled fronts via resolvent expansions near the essential spectrum. SIAM J. Math. Anal. 53(2), 2206–2242 (2021)

    Article  MathSciNet  Google Scholar 

  4. Beck, M., Nguyen, T., Sandstede, B., Zumbrun, K.: Nonlinear stability of source defects in the complex Ginzburg–Landau equation. Nonlinearity 27, 739–786 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bramson, M.: Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31(5), 531–581 (1978)

    Article  MathSciNet  Google Scholar 

  6. Bramson, M.: Convergence of Solutions of the Kolmogorov Equation to Traveling Waves. American Mathematical Society, Memoirs of the American Mathematical Society (1983)

  7. Bricmont, J., Kupiainen, A.: Stability of moving fronts in the Ginzburg–Landau equation. Commun. Math. Phys 159, 287–318 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ebert, U., van Saarloos, W.: Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts. Physica D 146, 1–99 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. Eckmann, J.-P., Schneider, G.: Non-linear stability of modulated fronts for the Swift–Hohenberg equation. Commun. Math. Phys. 225, 361–397 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  10. Eckmann, J.-P., Wayne, C.E.: The nonlinear stability of front solutions for parabolic partial differential equations. Commun. Math. Phys 161(2), 323–334 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  11. Faye, G., Holzer, M.: Asymptotic stability of the critical Fisher-KPP front using pointwise estimates. Z. Angew. Math. Phys. 70(1), 13 (2018)

    Article  MathSciNet  Google Scholar 

  12. Fiedler, B., Scheel, A.: Spatio-temporal dynamics of reaction–diffusion patterns. In: Kirkilionis, M., Krömker, S., Rannacher, R., Tomi, F. (eds.) Trends in Nonlinear Analysis, pp. 23–152. Springer, Berlin (2003)

  13. Gallay, T.: Local stability of critical fronts in nonlinear parabolic partial differential equations. Nonlinearity 7(3), 741–764 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  14. Hamel, F., Nolen, J., Roquejoffre, J.-M., Ryzhik, L.: A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Netw. Heterog. Media 8(1), 275–289 (2013)

    Article  MathSciNet  Google Scholar 

  15. Henry, D.: Geometric theory of semilinear parabolic equations. Lecture Notes in Math. Springer, Berlin (1981)

  16. Hilder, B.: Nonlinear stability of fast invading fronts in a Ginzburg–Landau equation with an additional conservation law. Nonlinearity 34(8), 5538–5575 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  17. Holzer, M., Scheel, A.: Criteria for pointwise growth and their role in invasion processes. J. Nonlinear Sci. 24(1), 661–709 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  18. Howard, P., Zumbrun, K.: Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47(3), 741–871 (1998)

    Article  MathSciNet  Google Scholar 

  19. Kapitula, T.: Stability of weak shocks in \(\omega -\lambda \) systems. Indiana U. Math. J. 40(4), 1193–1219 (1991)

    Article  MathSciNet  Google Scholar 

  20. Kapitula, T.: On the stability of traveling waves in weighted \(L^\infty \) spaces. J. Differ. Equ. 112(1), 179–215 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  21. Kapitula, T., Promislow, K.: Spectral and Dynamical Stability of Nonlinear Waves. Applied Mathematical Sciences. Springer, New York (2013)

    Book  Google Scholar 

  22. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications. Birkhauser, Basel (1995)

    Google Scholar 

  23. Nolen, J., Roquejoffre, J.-M., Ryzhik, L.: Convergence to a single wave in the Fisher-KPP equation. Chin. Ann. Math. Ser. B 38(2), 629–646 (2017)

    Article  MathSciNet  Google Scholar 

  24. Nolen, J., Roquejoffre, J.-M., Ryzhik, L.: Refined long-time asymptotics for Fisher-KPP fronts. Commun. Contemp. Math. 21(07), 1850072 (2019)

    Article  MathSciNet  Google Scholar 

  25. Palmer, K.: Exponential dichotomies and transversal homoclinic points. J. Differ. Equ. 55, 225–256 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  26. Palmer, K.: Exponential dichotomies and Fredholm operators. Proc. Am. Math. Soc. 104, 149–156 (1988)

    Article  MathSciNet  Google Scholar 

  27. Sattinger, D.: On the stability of waves of nonlinear parabolic systems. Adv. Math. 22(3), 312–355 (1976)

    Article  MathSciNet  Google Scholar 

  28. van Saarloos, W.: Front propagation into unstable states. Phys. Rep. 386, 29–222 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation through the Graduate Research Fellowship Program under Grant No. 00074041, as well as through NSF-DMS-1907391. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnd Scheel.

Additional information

Dedicated to the memory of Pavol Brunovský

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avery, M., Scheel, A. Sharp Decay Rates for Localized Perturbations to the Critical Front in the Ginzburg–Landau Equation. J Dyn Diff Equat 36 (Suppl 1), 287–322 (2024). https://doi.org/10.1007/s10884-021-10093-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-10093-3

Keywords

Navigation