Skip to main content

Traveling wave of a reaction–diffusion vector-borne disease model with nonlocal effects and distributed delay

Abstract

This paper is devoted to investigate the existence and nonexistence of traveling wave solution for a diffusive vector-borne disease model with nonlocal reaction and distributed delays. We demonstrate that the basic reproduction number \({\mathcal {R}}_0\) of the corresponding ordinary differential equation system as a threshold determines whether the model admits traveling waves or not and there exists a critical wave speed \(c_m^*>0\) when \({\mathcal {R}}_0>1\). Specifically, (i) As \({\mathcal {R}}_0>1\) and the wave speed \(c>c_m^*\), the existence of traveling waves for the system is established with the aid of a perturbed system; (ii) As \({\mathcal {R}}_0>1\) and \(0<c<c_m^*\), the nonexistence of traveling waves is proved via the two-sided Laplace transform; (iii) As \({\mathcal {R}}_0\le 1\) and \(c>0\), the nonexistence is obtained by utilizing the comparison principle. The theoretical results are applied to dengue fever epidemics. We study the effects of geographical movement, nonlocal interaction, incubation period and \({\mathcal {R}}_0\) on the threshold speed \(c_m^*\) for dengue fever.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Al-Omari, J.F.M., Gourley, S.A.: A nonlocal reaction–diffusion model for a single species with stage structure and distributed maturation delay. Eur. J. Appl. Math. 16, 37–51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Becker, N., Petric, D., Zgomba, M., et al.: Mosquitoes and Their Control, 2nd edn. Springer, New York (2010)

    Book  Google Scholar 

  3. Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55, 949–1032 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berestycki, H., Hamel, F.: Generalized transition waves and their properties. Commun. Pure Appl. Math. 65, 592–648 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhatt, S., Gething, P.W., Brady, O.J., et al.: The global distribution and burden of dengue. Nature 496, 504–507 (2013)

    Article  Google Scholar 

  6. Brady, O.J., Gething, P.W., Bhatt, S., et al.: Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760e1760 (2012)

    Article  Google Scholar 

  7. Cai, L., Li, X., Fang, B., et al.: Global properties of vector-host disease models with time delays. J. Math. Biol. 74, 1397–1423 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carr, J., Chmaj, A.: Uniqueness of travelling waves for nonlocal monostable equations. Proc. Am. Math. Soc. 132, 2433–2439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chapwanya, M., Dumont, Y.: On crop vector-borne disease. Impact of virus lifespan and contact rate on the traveling-wave speed of infective fronts. Ecol Complex. 34, 119–133 (2018)

    Article  Google Scholar 

  10. Chaves, L.S.M., Fry, J., Malik, A., et al.: Global consumption and international trade in deforestation-associated commodities could influence malaria risk. Nat Commun. 11, 1258 (2020)

    Article  Google Scholar 

  11. Denu, D., Ngoma, S., Salako, R.B.: Existence of traveling wave solutions of a deterministic vector-host epidemic model with direct transmission. J. Math. Anal. Appl. 487, 123995 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ducrot, A., Magal, P.: Travelling wave solutions for an infection-age structured model with diffusion. Proc. R. Soc. Edinb. 139, 459–482 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dunbar, S.R.: Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinic orbits. SIAM J. Appl. Math. 46, 1057–1078 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dunbar, S.R.: Travelling wave solutions of diffusive Lotka–Volterra equations. J. Math. Biol. 17, 11–32 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dunbar, S.R.: Traveling wave solutions of diffusive Lotka–Volterra equations: a heteroclinic connection in \(R^4\). Trans. Am. Math. Soc. 286, 557–594 (1984)

    MATH  MathSciNet  Google Scholar 

  16. Esteva, L., Vargas, C.: Analysis of a dengue disease transmission model. Math. Biosci. 150, 131–151 (1998)

    Article  MATH  Google Scholar 

  17. Fang, J., Zhao, X.-Q.: Monotone wavefronts for partially degenerate reaction–diffusion systems. J. Dyn. Differ. Equ. 21, 663–680 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Halstead, S.B.: Dengue. Lancet 370, 1644–1652 (2007)

    Article  Google Scholar 

  19. Hosono, Y., Ilyas, B.: Traveling waves for a simple diffusive epidemic model. Math. Models Methods Appl. Sci. 5, 935–966 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hsu, C.H., Yang, T.S.: Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models. Nonlinearity 26, 121–139 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, W.Z.: A geometric approach in the study of traveling waves for some classes of non-monotone reaction–diffusion systems. J. Differ. Equ. 260, 2190–2224 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kendall, D.G.: Discussion of Measles periodicity and community size. J. R. Stat. Soc. A. 120, 64–76 (1959)

    Google Scholar 

  23. Kermack, W.O., McKendrik, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A. 115, 700–721 (1927)

    Article  MATH  Google Scholar 

  24. Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 1–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lou, Y., Zhao, X.-Q.: A reaction–diffusion malaria model with incubation period in the vector population. J. Math. Boil. 62, 543–568 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ma, S.W.: Traveling wavefronts for delayed reaction–diffusion systems via a fixed point theorem. J. Differ. Equ. 171, 294–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Maidana, N.A., Yang, H.: Spatial spreading of West Nile virus described by traveling waves. J. Theoret. Biol. 258, 403–417 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mirski, T., Bartoszcze, M., Bielawska-Drozd, A.: Impact of climate change on infectious diseases. Pol. J. Environ. Stud. 21, 525–532 (2012)

    Google Scholar 

  29. Ruan, S.: Spatial-Temporal Dynamics in Nonlocal Epidemiological Models. In: Mathematics for Life Science and Medicine. Springer, Berlin, pp. 97–122 (2007)

  30. Sadilek, A., Hswen, Y., Bavadekar, S., et al.: Lymelight: forecasting Lyme disease risk using web search data. nej Digit. Med. 16(3) (2020)

  31. Shuai, Z., van den Driessche, P.: Global dynamics of cholera models with differential infectivity. Math. Biosci. 234, 118–126 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tian, B., Yuan, R.: Traveling waves for a diffusive SEIR epidemic model with non-local reaction. Appl. Math. Model. 50, 432–449 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Volpert, A.I., Volpert, V.A., Volpert, V.A.: Travelling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, vol. 140. American Mathematical Society, Providence (1994)

    Book  MATH  Google Scholar 

  35. Wang, K., Wang, W.: Propagation of HBV with spatial dependence. Math. Biosci. 210, 78–95 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, J.L., Chen, Y.M.: Threshold dynamics of a vector-borne disease model with spatial structure and vector-bias. Appl. Math. Lett. 100, 106052 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, S.M., Feng, Z., Wang, Z.-C., et al.: Periodic traveling wave of a time periodic and diffusive epidemic model with nonlocal delayed transmission. Nonlinear Anal. RWA 55, 103117103117 (2020)

    Article  MathSciNet  Google Scholar 

  38. Wang, W., Zhao, X.-Q.: A nonlocal and time-delayed reaction–diffusion model of dengue transmission. SIAM J. Appl. Math. 71, 147–168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, W., Zhao, X.-Q.: Basic reproduction numbers for reaction–diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11, 1652–1673 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, Z., Wang, H.: Bistable traveling waves in impulsive reaction–advection–diffusion models. J. Differ. Equ. 285, 17–39 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, Z.-C., Li, W.-T., Ruan, S.: Travelling fronts in monostable equations with nonlocal delayed effects. J. Dyn. Differ. Equ. 20, 573–607 (2008)

    Article  MATH  Google Scholar 

  42. Wang, Z.-C., Li, W.-T., Ruan, S.: Travelling wave fronts in reaction–diffusion systems with spatio-temporal delays. J. Differ. Equ. 222, 185–232 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, Z.-C., Wu, J.-H.: Travelling waves of a diffusive Kermack–McKendrick epidemic model with non-local delayed transmission. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466, 237–261 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Widder, D.: The Laplace Transform. Princeton University Press, Princeton (1941)

    MATH  Google Scholar 

  45. Wu, J.-H., Zou, X.: Traveling wave fronts of reaction–diffusion systems with delay. J. Dyn. Differ. Equ. 13, 651–687 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wu, R., Zhao, X.-Q.: A reaction–diffusion model of vector-borne disease with periodic delays. J. Nonlinear Sci. 29, 29–64 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zeidler, E.: Nonlinear Functional Analysis and Its Applications I. Springer, New York (1986)

    Book  MATH  Google Scholar 

  48. Zhang, R., Wang, J.L., Liu, S.Q.: Traveling wave solutions for a class of discrete diffusive SIR epidemic model. J. Nonlinear Sci. 31(10) (2021)

  49. Zhang, T.: Minimal wave speed for a class of non-cooperative reaction–diffusion systems of three equations. J. Differ. Equ. 262, 4724–4770 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, T., Wang, W., Wang, K.: Minimal wave speed for a class of non-cooperative diffusion–reaction system. J. Differ. Equ. 260, 2763–2791 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhao, L., Wang, Z.-C., Ruan, S.: Traveling wave solutions in a two-group SIR epidemic model with constant recruitment. J. Math. Biol. 1, 1–45 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Zhao, X.-Q.: Basic reproduction ratios for periodic compartmental models with time delay. J. Dyn. Differ. Equ. 29, 67–82 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhao, X.-Q.: Global dynamics of a reaction and diffusion model for Lyme disease. J. Math. Biol. 65, 787–808 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhou, J., Song, L., Wei, J.: Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay. J. Differ. Equ. 268, 4491–4524 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhu, M., Lin, Z.G., Zhang, L.: Spatial-temporal risk index and transmission of a nonlocal dengue model. Nonlinear Anal. RWA 53, 103076 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and the editor for helpful suggestions which improved the manuscript. The research is supported by Natural Science Foundation of China (No. 11971013); an NSERC Discovery Grant; Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX20_0169); China Postdoctoral Science Foundation (No. 2021M691577).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyong Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by Natural Science Foundation of China (No. 11971013); an NSERC Discovery Grant; Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX20_0169); China Postdoctoral Science Foundation (No. 2021M691577)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Zhao, H., Wang, H. et al. Traveling wave of a reaction–diffusion vector-borne disease model with nonlocal effects and distributed delay. J Dyn Diff Equat (2021). https://doi.org/10.1007/s10884-021-10062-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-021-10062-w

Keywords

  • Traveling wave solution
  • Vector-borne disease model
  • Nonlocal reaction and distributed delay
  • Basic reproduction number
  • Critical wave speed

Mathematics Subject Classification

  • 35B40
  • 35C07
  • 35K57
  • 92D30