Skip to main content
Log in

Limiting Solutions of Nonlocal Dispersal Problem in Inhomogeneous Media

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with the nonlocal dispersal problem in inhomogeneous media. Our goal is to show the limiting behavior of perturbation equation with parameters. By analyzing the asymptotic behavior of solutions when the parameter is small, we find that convection appears in inhomogeneous media. Moreover, if the effect of inhomogeneous media changes, then we prove a convergence result that convection disappears in nonlocal dispersal problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreu-Vaillo, F., Maz\(\acute{o}\)n, J.M., Rossi, J.D., Toledo-Melero, J.: Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, AMS, Providence, Rhode Island, (2010)

  2. Bates, P.W., Fife, P., Ren, X., Wang, X.: Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 138, 105–136 (1997)

    Article  MathSciNet  Google Scholar 

  3. Berestycki, H., Coulon, A., Roquejoffre, J.M., Rossi, L.: The effect of a line with nonlocal diffusion on Fisher-KPP propagation. Math. Models Methods Appl. Sci. 25, 2519–2562 (2015)

    Article  MathSciNet  Google Scholar 

  4. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction–Diffusion Equations, Wiley Ser. Math. Comput. Biol. Wiley, Chichester (2003)

  5. Chen, S., Shi, J.-P., Zhang, G.: Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete Contin. Dyn. Syst. Ser. B (2020). (in press)

  6. Chasseigne, E., Chaves, M., Rossi, J.D.: Asympototic behavior for nonlocal diffusion equations. J. Math. Pures Appl. 86, 271–291 (2006)

    Article  MathSciNet  Google Scholar 

  7. Cortazar, C., Elgueta, M., Rossi, J.D.: Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary consitions. Israel J. Math. 170, 53–60 (2009)

    Article  MathSciNet  Google Scholar 

  8. Cortazar, C., Elgueta, M., Rossi, J.D., Wolanski, N.: How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems. Arch. Ration. Mech. Anal. 187, 137–156 (2008)

    Article  MathSciNet  Google Scholar 

  9. Coville, J.: On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators. J. Differ. Equ. 249, 2921–2953 (2010)

    Article  MathSciNet  Google Scholar 

  10. Du, Y.: Order Structure and Topological Methods in Nonlinear Partial Differential Equations. Maximum Principles and Applications, vol. 1. World Scientific, River Edge, NJ (2006)

    Book  Google Scholar 

  11. Evans, L.: Partial differential equations. AMS, Providence, Rhode Island (1998)

    MATH  Google Scholar 

  12. Fife, P.: Some nonlocal trends in parabolic and parabolic-like evolutions. Trends Nonlinear Anal. 129, 153–191 (2003)

    Article  Google Scholar 

  13. Hess, P., Weinberger, H.: Convergence to spatial-temporal clines in the Fisher equation with time-periodic fitnesses. J. Math. Biol. 28, 83–98 (1990)

    Article  MathSciNet  Google Scholar 

  14. Hutson, V., Martinez, S., Mischaikow, K., Vickers, G.T.: The evolution of dispersal. J. Math. Biol. 47, 483–517 (2003)

    Article  MathSciNet  Google Scholar 

  15. Ignat, L., Rossi, J.: A nonlocal convection–diffusion equation. J. Funct. Anal. 251, 399–437 (2007)

    Article  MathSciNet  Google Scholar 

  16. Kao, C.-Y., Lou, Y., Shen, W.: Random dispersal versus non-local dispersal. Discrete Contin. Dyn. Syst. 26, 551–596 (2010)

    Article  MathSciNet  Google Scholar 

  17. Li, W.-T., Sun, Y.-J., Wang, Z.-C.: Entire solutions in the Fisher-KPP equation with nonlocal dispersal. Nonlinear Anal. Real World Appl. 11, 2302–2313 (2010)

    Article  MathSciNet  Google Scholar 

  18. Molino, A., Rossi, J.D.: Nonlocal diffusion problems that approximate a parabolic equation with spatial dependence. Z. Angew. Math. Phys. 67(3), Art 41 (2016)

    Article  MathSciNet  Google Scholar 

  19. Murray, J.D.: Mathematical Biology, Biomathematics, vol. 19. Springer-Verlag, Berlin (1989)

    Book  Google Scholar 

  20. Nadin, G.: Existence and uniqueness of the solutions of a space-time periodic reaction–diffusion equation. J. Differ. Equ. 249, 1288–1304 (2010)

    Article  MathSciNet  Google Scholar 

  21. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl. Math. Sci., vol. 44. Springer-Verlag, New York (1983)

    Book  Google Scholar 

  22. Rawal, N., Shen, W.: Criteria for the existence of principal eigenvalues of time periodic nonlocal dispersal operators and applications. J. Dyn. Differ. Equ. 24, 927–954 (2012)

    Article  MathSciNet  Google Scholar 

  23. Rawal, N., Shen, W., Zhang, A.: Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats. Discrete Contin. Dyn. Syst. 35, 1609–1640 (2015)

    Article  MathSciNet  Google Scholar 

  24. Shen, W., Zhang, A.: Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats. J. Differ. Equ. 249, 747–795 (2010)

    Article  MathSciNet  Google Scholar 

  25. Shen, W., Zhang, A.: Traveling wave solutions of spatially periodic nonlocal monostable equations. Commun. Appl. Nonlinear Anal. 19, 73–101 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Shen, W., Xie, X.: Approximations of random dispersal operators/equations by nonlocal dispersal operators/equations. J. Differ. Equ. 259, 7375–7405 (2015)

    Article  MathSciNet  Google Scholar 

  27. Sun, J.W., Li, W.T., Yang, F.Y.: Approximate the Fokker–Planck equation by a class of nonlocal dispersal problems. Nonlinear Anal. 74, 3501–3509 (2011)

    Article  MathSciNet  Google Scholar 

  28. Sun, J.W.: Positive solutions for nonlocal dispersal equation with spatial degeneracy. Z. Angew. Math. Phys. 69(1), Art 11 (2018)

    Article  MathSciNet  Google Scholar 

  29. Wang, J.-B., Wu, C.F.: Forced waves and gap formations for a Lotka–Volterra competition model with nonlocal dispersal and shifting habitats. Nonlinear Anal. RWA 58, 103208 (2021)

    Article  MathSciNet  Google Scholar 

  30. Zhang, G.B.: Global stability of wavefronts with minimal speeds for nonlocal dispersal equations with degenerate nonlinearity. Nonlinear Anal. 74, 6518–6529 (2011)

    Article  MathSciNet  Google Scholar 

  31. Zlatoš, A.: Propagation of reactions in inhomogeneous media. Commun. Pure Appl. Math. 70, 884–949 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks Professors Wan-Tong Li (Lanzhou University) and Wenxian Shen (Auburn University) for encouragement and useful discussions. This work was partially supported by NSF of China through the Grant 11731005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Wen Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, JW. Limiting Solutions of Nonlocal Dispersal Problem in Inhomogeneous Media. J Dyn Diff Equat 34, 1489–1504 (2022). https://doi.org/10.1007/s10884-021-10012-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-10012-6

Keywords

Mathematics Subject Classification

Navigation