Skip to main content
Log in

Relaxation Oscillations in Predator–Prey Systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We characterize a criterion for the existence of relaxation oscillations in planar systems of the form

$$\begin{aligned} \frac{du}{dt}= u^{k+1} g(u,v,\varepsilon ), \qquad \frac{dv}{dt}=\varepsilon f(u,v,\varepsilon ) + u^{k+1} h(u,v,\varepsilon ), \end{aligned}$$

where \(k\ge 0\) is an arbitrary constant and \(\varepsilon >0\) is a sufficiently small parameter. Taking into account of possible degeneracy of the “discriminant” function occurred when \(k\ge 0\), this criterion generalizes and strengthens those for the case \(k=0\) obtained by Hsu (SIAM J Appl Dyn Syst 18:33–67, 2019) and Hsu and Wolkowicz (Discrete Contin Dyn Syst Ser B 25:1257–1277, 2020). Differing from the case of \(k=0\), our proof of the criterion is based on the construction of an invariant, thin annular region in an arbitrarily prescribed small neighborhood of a singular closed orbit and the establishment of an asymptotic formula for solutions near the v-axis. As applications of this criterion, we will give concrete conditions ensuring the existence of relaxation oscillations in general predator–prey systems, as well as spatially homogeneous relaxation oscillations and relaxed periodic traveling waves in a class of diffusive predator–prey systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ai, S., Sadhu, S.: Entry–exit theorem and relaxation oscillations for fast–slow planar systems. J. Differ. Equ. 268, 7220–7249 (2020)

    Article  ADS  Google Scholar 

  2. Bo, W., Lin, G., Ruan, S.: The effect of initial values on extinction or persistence in degenerate diffusion competition systems. J. Math. Biol. 80, 1423–1458 (2020)

    Article  MathSciNet  PubMed  Google Scholar 

  3. Brunovsky, P.: Tracking invariant manifolds without differential forms. Acta Math. Univ. Comenion. (N.S.) 65, 23–32 (1996)

    MathSciNet  Google Scholar 

  4. De Maesschalck, P., Dumortier, F., Roussarie, R.: Cyclicity of common slow fast cycles. Indagationes Mathematicae 22, 165–206 (2011)

    Article  MathSciNet  Google Scholar 

  5. De Maesschalck, P., Schecter, S.: The entry–exit function and geometric singular perturbation theory. J. Differ. Equ. 260, 6697–6715 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  7. Ghazaryan, A., Manukian, V., Schecter, S.: Traveling waves in the Holling–Tanner model with weak diffusion. Proc. R. Soc. A: Math. Phys. Eng. Sci. 471, 20150045 (2015)

    Article  ADS  Google Scholar 

  8. Hale, J.K.: Ordinary Differential Equations. Wiley, New York (1969)

    Google Scholar 

  9. Hastings, S.P., McLeod, J.B.: Uniqueness of relaxation oscillations: a classical approach. Q. Appl. Math. 73, 201–217 (2015)

    Article  MathSciNet  Google Scholar 

  10. Hsu, T.-H.: On bifurcation delay: an alternative approach using geometric singular perturbation theory. J. Differ. Equ. 262, 1617–1630 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hsu, T.-H.: Number and stability of relaxation oscillations for predator–prey systems with small death rates. SIAM J. Appl. Dyn. Syst. 18, 33–67 (2019)

    Article  MathSciNet  Google Scholar 

  12. Hsu, T.-H, Ruan, S.: Relaxation oscillations and the entry–exit function in multi-dimensional slow–fast systems.arXiv:1910.06318

  13. Hsu, T.-H., Wolkowicz, G.: A criterion for the existence of relaxation oscillations with applications to predator–prey systems and an epidemic model. Discrete Contin. Dyn. Syst. Ser. B. 25, 1257–1277 (2020)

    MathSciNet  Google Scholar 

  14. Hsu, S.-B., Shi, J.: Relaxation oscillation profile of limit cycle in predator–prey system. Discrete Contin. Dyn. Syst. Ser. B 11, 893–911 (2009)

    MathSciNet  Google Scholar 

  15. Huzak, R.: Predator–prey systems with small predator death rate. Electron. J. Qual. Theory Differ. Equ. 86, 1–16 (2018)

    Article  MathSciNet  Google Scholar 

  16. Jones, C.K.R.T.: Geometric singular perturbation theory. In: Johnson, R. (ed.) Dynamical Systems, Montecatini Terme, Lecture Notes in Mathematics, vol. 1609, pp. 44–118. Springer-Verlag, New York (1994)

    Google Scholar 

  17. Liu, W.: Exchange lemmas for singular perturbation problems with certain turning points. J. Differ. Equ. 167, 134–180 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  18. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174, 312–368 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kuehn, C.: Multiple Time Scale Dynamics. Springer, Berlin (2015)

    Book  Google Scholar 

  20. Li, C., Zhu, H.: Canard cycles for predator–prey systems with Holling types of functional response. J. Differ. Equ. 254, 879–910 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Li, M., Liu, W., Shan, C., Yi, Y.: Turning points and relaxation oscillation cycles in simple epidemic models. SIAM J. Appl. Math. 76, 663–687 (2016)

    Article  MathSciNet  Google Scholar 

  22. Liu, W., Xiao, D., Yi, Y.: Relaxation oscillations in a class of predator–prey systems. J. Differ. Equ. 188, 306–331 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lundstom, N.L., Soderbacka, G.: Estimates of size of cycle in a predator–prey system. Differ. Equ. Dyn. Syst. (2018). https://doi.org/10.1007/s12591-018-0422-x

    Article  Google Scholar 

  24. Piltz, S.H., Veerman, F., Maini, P.K., Porter, M.A.: A predator–2 prey fast–slow dynamical system for rapid predator evolution. SIAM J. Appl. Dyn. Syst. 16, 54–90 (2017)

    Article  MathSciNet  Google Scholar 

  25. Schecter, S.: Persistent unstable equilibria and closed orbits of a singularly perturbed equation. J. Differ. Equ. 60, 131–141 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  26. Schecter, S.: Exchange lemmas. II. General exchange lemma. J. Differ. Equ. 245, 411–441 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  27. Shen, J., Hsu, C.H., Yang, T.H.: Fast–slow dynamics for intraguild predation models with evolutionary effects. J. Dyn. Diff. Equ. 32, 895–920 (2020)

    Article  MathSciNet  Google Scholar 

  28. Stoker, J.J.: Nonlinear Vibrations. Interscience, New York (1950)

    Google Scholar 

  29. Wang, C., Zhang, X.: Stability loss delay and smoothness of the return map in slow–fast systems. SIAM J. Appl. Dyn. Syst. 17, 788–822 (2018)

    Article  MathSciNet  Google Scholar 

  30. Wang, J., Zhang, X., Shi, J., Wang, Y.: Profile of the unique limit cycle in a class of general predator–prey systems. Appl. Math. Comput. 242, 397–406 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for careful reading of the manuscript and for all valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangbing Ai.

Additional information

Dedicated to the memory of Professor Pavol Brunovsky.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author was partially supported by NSERC discovery grants 1257749 and RGPIN-2020-04451, a faculty development grant from University of Alberta, and a Scholarship from Jilin University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, S., Yi, Y. Relaxation Oscillations in Predator–Prey Systems. J Dyn Diff Equat 36 (Suppl 1), 77–104 (2024). https://doi.org/10.1007/s10884-021-09980-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-09980-6

Keywords

Mathematics Subject Classification

Navigation