Skip to main content

Advertisement

Log in

Dynamics and Profiles of a Diffusive Cholera Model with Bacterial Hyperinfectivity and Distinct Dispersal Rates

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper provides an analysis on global dynamics of a diffusive cholera model. We formulate the model by a reaction–diffusion system with space-dependent parameters and bacterial hyperinfectivity, where susceptible and infectious humans disperse with distinct dispersal rates and the hyper-infectious and lower-infectious vibrios in contaminated water are assumed to be immobile in the domain. We first establish the well-posedness of the model. To cope with the lack of compactness of solution semiflow, we verify the asymptotic smoothness of semiflow implied with \(\kappa \)-contraction condition. The basic reproduction number, \(\mathfrak {R}_0\), is identified as a threshold, predicting whether or not the disease extinction and persistence will occur. \(\mathfrak {R}_0\) is also equivalently characterized by some principle spectral conditions of an associated elliptic eigenvalue problem. The asymptotic profiles of the positive steady state are investigated for the cases when the dispersal rate of the susceptible humans is small and large. Our theoretical results indicate that: (1) cholera epidemics will be extinct through restricting the flow of susceptible humans within some extend; (2) the risk of infection will be underestimated if hyperinfectivity is not considered. In a homogeneous case, we also confirm the global attractivity of a unique positive equilibrium by utilizing the technique of Lyapunov function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic profiles of the steady states for an SIS epidemic reaction–diffusion model. Discrete Control Dyn. Syst. 21, 1–20 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Alam, A., LaRocque, R.C., Harris, J.B., Vanderspurt, C., Ryan, E.T., Qadri, F., Calderwood, S.B.: Hyperinfectivity of human-passaged Vibrio cholerae can be modelled by growth in the infant mouse. Infect. Immun. 73, 6674–6679 (2005)

    Google Scholar 

  3. Andrews, J.R., Basu, S.: Transmission dynamics and control of cholera in Haiti: an epidemic model. Lancet 377, 1248–1255 (2011)

    Google Scholar 

  4. Bani-Yaghoub, M., Gautam, R., Shuai, Z., van den Driessche, P., Ivanek, R.: Reproduction numbers for infections with free-living pathogens growing in the environment. J. Biol. Dyn. 6, 923–940 (2012)

    MATH  Google Scholar 

  5. Bertuzzo, E., Casagrandi, R., Gatto, M., Rodriguez-Iturbe, I., Rinaldo, A.: On spatially explicit models of cholera epidemics. J. R. Soc. Interface 7, 321–333 (2010)

    Google Scholar 

  6. Carfora, M.F., Torcicollo, I.: Identification of epidemiological models: the case study of Yemen cholera outbreak. Appl. Anal. (2020). https://doi.org/10.1080/00036811.2020.1738402

    Article  MATH  Google Scholar 

  7. Carpenter, A.: Behavior in the time of Cholera: evidence from the 2008–2009 Cholera outbreak in Zimbabwe. In: Kennedy, W.G., Agarwal, N., Yang, S.J. (eds.) Social Computing, Behavioral-Cultural Modeling and Prediction. SBP, 2014. Lecture Notes in Computer Science, vol. 8393. Springer, Cham (2014)

    Google Scholar 

  8. Codeço, C.T.: Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. 1, 1 (2001)

    Google Scholar 

  9. Capone, F., De Cataldis, V., De Luca, R.: Influence of diffusion on the stability of equilibria in a reaction–diffusion system modeling cholera dynamic. J. Math. Biol. 71, 1107–1131 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Capasso, V., Paveri-Fontana, S.L.: A mathematical model for the 1973 cholera epidemic in the European Mediterranean Region. Rev. Epidemiol. Sante 27(2), 121–132 (1979)

    Google Scholar 

  11. Cui, R., Lam, K.-Y., Lou, Y.: Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments. J. Differ. Equ. 263, 2343–2373 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Cui, R., Lou, Y.: A spatial SIS model in advective heterogeneous environments. J. Differ. Equ. 261, 3305–3343 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Deng, K., Wu, Y.: Dynamics of an SIS epidemic reaction–diffusion model. Proc. R. Soc. Edinb. Sect. A 146, 929–946 (2016)

    MATH  Google Scholar 

  14. Du, Z., Peng, R.: A priori \(L^{\infty }\) estimates for solutions of a class of reaction–diffusion systems. J. Math. Biol. 72, 1429–1439 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Evans, L.C.: Partial Differential Equations. Americal Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  16. Hartley Jr., D.M., Morris, J.G., Smith, D.L.: Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics? PLoS Med. 3, 63–69 (2006)

    Google Scholar 

  17. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1989)

    Google Scholar 

  18. Jin, Y., Wang, F.-B.: Dynamics of a benthic-drift model for two competitive species. J. Math. Anal. Appl. 462, 840–860 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Kuto, K., Matsuzawa, H., Peng, R.: Concentration profile of endemic equilibrium of a reaction–diffusion–advection SIS epidemic model. Calc. Var. Partial Differ. Equ. 56, 112 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Kapp, C.: Zimbabwe’s humanitarian crisis worsens. Lancet 373, 447 (2009)

    Google Scholar 

  21. Koelle, K., Rod, X., Pascual, M., Yunus, M., Mostafa, G.: Refractory periods and climate forcing in cholera dynamics. Nature 436, 696–700 (2005)

    Google Scholar 

  22. Lei, C., Li, F., Liu, J.: Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment. Discrete Contin. Dyn. Syst. Ser. B 23, 4499–4517 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Lei, C., Xiong, J., Zhou, X.: Qualitative analysis on an SIS epidemic reaction–diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete Contin. Dyn. Syst. Ser. B 25, 81–98 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Li, H., Peng, R., Wang, Z.: On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: analysis, simulations, and comparison with other mechanisms. SIAM J. Appl. Math. 78, 2129–2153 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Li, H., Peng, R., Xiang, T.: Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion. Eur. J. Appl. Math. 31, 26–56 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Li, H., Peng, R., Wang, F.-B.: Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model. J. Differ. Equ. 262, 885–913 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Magal, P., Zhao, X.-Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM. J. Math. Anal. 37, 251–275 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Mugero, C., Hoque, A.: Review of cholera epidemic in South Africa with focus on KwaZulu-Natal Province. Technical Report, KwaZulu-Natal Department of Health, Pietermaritzburg, South Africa (2001)

  29. Mukandavire, Z., Liao, S., Wang, J., Gaff, H., Smith, D.L., Morris, J.G.: Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe. Proc. Natl. Acad. Sci. 108, 8767–8772 (2011)

    Google Scholar 

  30. Martin, R.H., Smith, H.L.: Abstract functional differential equations and reaction–diffusion systems. Trans. Am. Math. Soc. 321, 1–44 (1990)

    MathSciNet  MATH  Google Scholar 

  31. Nussbaum, R.D.: Eigenvectors of nonlinear positive operator and the linear Krein–Rutman theorem. In: Fadell, E., Fournier, G. (eds.) Fixed Point Theory. Lecture Notes in Mathematics, vol. 886, pp. 309–331. Springer, New York (1981)

    Google Scholar 

  32. Nelson, E.J., Harris, J.B., Morris, J.G., Calderwood, S.B., Camilli, A.: Cholera transmission: the host, pathogen and bacteriophage dynamics. Nat. Rev. Microbiol. 7, 693–702 (2009)

    Google Scholar 

  33. Pascual, M., Koelle, K., Dobson, A.P.: Hyperinfectivity in cholera: a new mechanism for an old epidemiological model? PLoS Med. 3(6), 931–932 (2006)

    Google Scholar 

  34. Pazy, A.: Semigroups of Linear Operators and Application to Partial Differential Equations. Springer, Berlin (1983)

    MATH  Google Scholar 

  35. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, Berlin (1984)

    MATH  Google Scholar 

  36. Peng, R.: Asymptotic profiles of the positive steady state for an SIS epidemic reaction–diffusion model. Part I. J. Differ. Equ. 247, 1096–1119 (2009)

    MATH  Google Scholar 

  37. Peng, R., Yi, F.: Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement. Physica D 259, 8–25 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Peng, R., Liu, S.: Global stability of the steady states of an SIS epidemic reaction–diffusion model. Nonlinear Anal. 71, 239–247 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Song, P., Lou, Y., Xiao, Y.: A spatial SEIRS reaction–diffusion model in heterogeneous environment. J. Differ. Equ. 267, 5084–5114 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Rinaldo, A., Bertuzzo, E., Mari, L., Righetto, L., Blokesch, M., Gatto, M., Casagrandi, R., Murray, M., Vesenbeckh, S.M., Rodriguez-Iturbe, I.: Reassessment of the 2010–2011 Haiti cholera outbreak and rainfall-driven multiseason projections. Proc. Natl. Acad. Sci. USA 109, 6602–6607 (2012)

    Google Scholar 

  41. Shuai, Z., Tien, J.H., van den Driessche, P.: Cholera models with hyperinfectivity and temporary immunity. Bull. Math. Biol. 74, 2423–2445 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Shuai, Z., van den Driessche, P.: Modeling and control of cholera on networks with a common water source. J. Biol. Dyn. 9(1), 90–103 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Smith, H.L., Zhao, X.-Q.: Robust persistence for semidynamical systems. Nonlinear Anal. TMA 47(9), 6169–6179 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, vol. 41. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  45. Tien, J.H., Earn, D.J.D.: Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bull. Math. Biol. 72, 1502–1533 (2010)

    MathSciNet  MATH  Google Scholar 

  46. Tuite, A.R., Tien, J.H., Eisenberg, M., Earn, D.J.D., Ma, J., Fisman, D.N.: Cholera epidemic in Haiti, 2010: using a transmission model to explain spatial spread of disease and identify optimal control interventions. Ann. Intern. Med. 154, 593–601 (2011)

    Google Scholar 

  47. Thieme, H.R.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)

    MathSciNet  MATH  Google Scholar 

  48. Wang, F.-B., Shi, J., Zou, X.: Dynamics of a host-pathogen system on a bounded spatial domain. Commun. Pure Appl. Anal. 14(6), 2535–2560 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Wang, J., Liao, S.: A generalized cholera model and epidemic/endemic analysis. J. Biol. Dyn. 6, 568–589 (2012)

    MathSciNet  MATH  Google Scholar 

  50. Wang, J., Xie, F., Kuniya, T.: Analysis of a reaction–diffusion cholera epidemic model in a spatially heterogeneous environment. Commun. Nonlinear Sci. Numer. Simul. 80, 104951 (2020)

    MathSciNet  MATH  Google Scholar 

  51. Wang, J., Wang, J.: Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population. J. Dyn. Differ. Equ. 33, 549–575 (2021)

    MathSciNet  MATH  Google Scholar 

  52. Wang, W., Zhao, X.-Q.: Basic reproduction numbers for reaction–diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11(4), 1652–1673 (2012)

    MathSciNet  MATH  Google Scholar 

  53. Wang, X., Wang, J.: Analysis of cholera epidemics with bacterial growth and spatial movement. J. Biol. Dyn. 9(1), 233–261 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Wang, X., Gao, D., Wang, J.: Influence of human behavior on cholera dynamics. Math. Biosci. 267, 41–52 (2015)

    MathSciNet  MATH  Google Scholar 

  55. Wang, X., Wang, F.-B.: Impact of bacterial hyperinfectivity on cholera epidemics in a spatially heterogeneous environment. J. Math. Anal. Appl. 480, 123407 (2019)

    MathSciNet  MATH  Google Scholar 

  56. Wang, X., Posny, D., Wang, J.: A reaction–convection–diffusion model for cholera spatial dynamics. Discrete Contin. Dyn. Syst. Ser. B 21, 2785–2809 (2016)

    MathSciNet  MATH  Google Scholar 

  57. Wu, Y., Zou, X.: Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates. J. Differ. Equ. 264, 4989–5024 (2018)

    MathSciNet  MATH  Google Scholar 

  58. Yang, Y., Zou, L., Zhou, J., Hsu, C.-H.: Dynamics of a waterborne pathogen model with spatial heterogeneity and general incidence rate. Nonlinear Anal. RWA 53, 103065 (2020)

    MathSciNet  MATH  Google Scholar 

  59. Yamazaki, K., Wang, X.: Global well-posedness and asymptotic behavior of solutions to a reaction–convection–diffusion cholera epidemic model. Discrete Contin. Dyn. Syst. Ser. B 21, 1297–1316 (2016)

    MathSciNet  MATH  Google Scholar 

  60. Yamazaki, K., Wang, X.: Global stability and uniform persistence of the reaction–convection–diffusion cholera epidemic model. Math. Biosci. Eng. 14(2), 559–579 (2017)

    MathSciNet  MATH  Google Scholar 

  61. Zhou, J., Yang, Y., Zhang, T.: Global dynamics of a reaction–diffusion waterborne pathogen model with general incidence rate. J. Math. Anal. Appl. 466, 835–859 (2018)

    MathSciNet  MATH  Google Scholar 

  62. Zhang, L., Wang, Z., Zhang, Y.: Dynamics of a reaction–diffusion waterborne pathogen model with direct and indirect transmission. Comput. Math. Appl. 72, 202–215 (2016)

    MathSciNet  MATH  Google Scholar 

  63. Zhang, X., Zhang, Y.: Spatial dynamics of a reaction–diffusion cholera model with spatial heterogeneity. Discrete Contin. Dyn. Syst. Ser. B 23, 2625–2640 (2018)

    MathSciNet  MATH  Google Scholar 

  64. Zhao, X.-Q.: Dynamical Systems in Population Biology. Springer, New York (2003)

    MATH  Google Scholar 

  65. Zhu, S., Wang, J.: Asymptotic profiles of steady states for a diffusive SIS epidemic model with spontaneous infection and a logistic source. Commun. Pure Appl. Anal. 19(6), 3323–3340 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous reviewer for his/her suggestions that have improved this paper. J. Wang was supported by National Natural Science Foundation of China (Nos. 12071115 and 11871179), Natural Science Foundation of Heilongjiang Province (Nos. LC2018002 and LH2019A021) and Heilongjiang Privincial Key Laboratory of the Theory and Computation of Complex Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinliang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Additional information

Communicated by Yingfei Yi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wu, X. Dynamics and Profiles of a Diffusive Cholera Model with Bacterial Hyperinfectivity and Distinct Dispersal Rates. J Dyn Diff Equat 35, 1205–1241 (2023). https://doi.org/10.1007/s10884-021-09975-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-09975-3

Keywords

Navigation