Skip to main content
Log in

Stability of Fractionally Dissipative 2D Quasi-geostrophic Equation with Infinite Delay

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, fractionally dissipative 2D quasi-geostrophic equations with an external force containing infinite delay is considered in the space \(H^s\) with \(s\ge 2-2\alpha \) and \(\alpha \in (\frac{1}{2},1)\). First, we investigate the existence and regularity of solutions by Galerkin approximation and the energy method. The continuity of solutions with respect to initial data and the uniqueness of solutions are also established. Then we prove the existence and uniqueness of a stationary solution by the Lax–Milgram theorem and the Schauder fixed point theorem. Using the classical Lyapunov method, the construction method of Lyapunov functionals and the Razumikhin–Lyapunov technique, we analyze the local stability of stationary solutions. Finally, the polynomial stability of stationary solutions is verified in a particular case of unbounded variable delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appleby, J.A.D., Buckwar, E.: Sufficient conditions for polynomial asymptotic behaviour of the stochastic pantograph equation. In: Proceedings of the 10th Colloquium on the Qualitative Theory of Differential Equations, Electronic Journal of Qualitative Theory of Differential Equation, pp. 1–32 (2016)

  2. Caraballo, T., Han, X.: Stability of stationary solutions to 2D-Navier–Stokes models with delays. Dyn. Partial Differ. Equ. 11(4), 345–359 (2014)

    Article  MathSciNet  Google Scholar 

  3. Caraballo, T., Han, X.: A survey on Navier–Stokes models with delays: existence, uniqueness and asymptotic behavior of solutions. Discrete Contin. Dyn. Syst. Ser. S 8(6), 1079–1101 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Caraballo, T., Real, J.: Navier–Stokes equations with delays. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 457(2014), 2441–2453 (2001)

    Article  MathSciNet  Google Scholar 

  5. Caraballo, T., Real, J.: Asymptotic behaviour of two-dimensional Navier–Stokes equations with delays. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459(2040), 3181–3194 (2003)

    Article  MathSciNet  Google Scholar 

  6. Caraballo, T., Real, J., Shaikhet, L.: Method of Lyapunov functionals construction in stability of delay evolution equations. J. Math. Anal. Appl. 334(2), 1130–1145 (2007)

    Article  MathSciNet  Google Scholar 

  7. Cholewa, J.W., Dlotko, T.: Global Attractors in Abstract Parabolic Problems. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  8. Cholewa, J.W., Dlotko, T., Turski, A.W.: Asymptotics of pseudodifferential parabolic equations. Demonstr. Math. 35(1), 75–91 (2002)

    Article  MathSciNet  Google Scholar 

  9. Constantin, P., Glatt-Holtz, N., Vicol, V.: Unique ergodicity for fractionally dissipated, stochastically forced 2D Euler equations. Commun. Math. Phys. 330(2), 819–857 (2014)

    Article  MathSciNet  Google Scholar 

  10. Constantin, P., Tarfulea, A., Vicol, V.: Long time dynamics of forced critical SQG. Commun. Math. Phys. 335(1), 93–141 (2015)

    Article  MathSciNet  Google Scholar 

  11. Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30(5), 937–948 (1999)

    Article  MathSciNet  Google Scholar 

  12. Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249(3), 511–528 (2004)

    Article  MathSciNet  Google Scholar 

  13. Dai, M.: Existence and stability of steady-state solutions to the quasi-geostrophic equations in \({\mathbb{R}}^2\). Nonlinearity 28(11), 4227–4248 (2015)

    Article  MathSciNet  Google Scholar 

  14. Dai, M.: Regularity criterion and energy conservation for the supercritical quasi-geostrophic equation. J. Math. Fluid Mech. 19(2), 191–202 (2017)

    Article  MathSciNet  Google Scholar 

  15. Dlotko, T., Kania, M.B., Sun, C.: Quasi-geostrophic equation in \({\mathbb{R}}^2\). J. Differ. Equ. 259(2), 531–561 (2015)

    Article  Google Scholar 

  16. Dlotko, T., Liang, T., Wang, Y.: Critical and super-critical abstract parabolic equations. Discrete Contin. Dyn. Syst. Ser. B 25(4), 1517–1541 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Dong, B., Chen, Z.: Asymptotic stability of the critical and super-critical dissipative quasi-geostrophic equation. Nonlinearity 19(12), 2919–2928 (2006)

    Article  MathSciNet  Google Scholar 

  18. Farwig, R., Qian, C.: Asymptotic behavior for the quasi-geostrophic equations with fractional dissipation in \({\mathbb{R}}^2\). J. Differ. Equ. 266(10), 6525–6579 (2019)

    Article  Google Scholar 

  19. Ju, N.: Global solutions to the two dimensional quasi-geostrophic equation with critical or super-critical dissipation. Math. Ann. 334(3), 627–642 (2006)

    Article  MathSciNet  Google Scholar 

  20. Ju, N.: Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space. Commun. Math. Phys. 251(2), 365–376 (2004)

    Article  MathSciNet  Google Scholar 

  21. Ju, N.: The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Commun. Math. Phys. 255(1), 161–181 (2005)

    Article  MathSciNet  Google Scholar 

  22. Kato, J.: Stability problem in functional differential equations with infinite delay. Funkcial. Ekvac. 21(1), 63–80 (1978)

    MathSciNet  MATH  Google Scholar 

  23. Liu, L., Caraballo, T., Marín-Rubio, P.: Stability results for 2D Navier–Stokes equations with unbounded delay. J. Differ. Equ. 265(11), 5685–5708 (2018)

    Article  MathSciNet  Google Scholar 

  24. Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  25. Marín-Rubio, P., Márquez-Durán, A.M., Real, J.: Three dimensional system of globally modified Navier–Stokes equations with infinite delays. Discrete Contin. Dyn. Syst. Ser. B 14(2), 655–673 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Marín-Rubio, P., Márquez-Durán, A.M., Real, J.: Asymptotic behavior of solutions for a three dimensional system of globally modified Navier–Stokes equations with a locally Lipschitz delay term. Nonlinear Anal. 79, 68–79 (2013)

    Article  MathSciNet  Google Scholar 

  27. Medjo, T.T.: Attractors for the multilayer quasi-geostrophic equations of the ocean with delays. Appl. Anal. 87(3), 325–347 (2008)

    Article  MathSciNet  Google Scholar 

  28. Murakami, S.: Stability in functional-differential equations with infinite delay. Tohoku Math. J. (2) 37(4), 561–570 (1985)

    Article  MathSciNet  Google Scholar 

  29. Niche, C.J., Planas, G.: Existence and decay of solutions to the dissipative quasi-geostrophic equation with delays. Nonlinear Anal. 75(9), 3936–3950 (2012)

    Article  MathSciNet  Google Scholar 

  30. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)

    Book  Google Scholar 

  31. Ren, J., Ma, X.: \(L^2\) stability for solutions of subcritical quasi-geostrophic equation with large perturbations. Appl. Math. Comput. 218(9), 5337–5345 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Robinson, J.C.: Infinite-Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  33. Schonbek, M.E., Schonbek, T.P.: Asymptotic behavior to dissipative quasi-geostrophic flows. SIAM J. Math. Anal. 35(2), 357–375 (2003)

    Article  MathSciNet  Google Scholar 

  34. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  35. Wan, L., Duan, J.: Exponential stability of the multi-layer quasi-geostrophic ocean model with delays. Nonlinear Anal. 71(3–4), 799–811 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the anonymous reviewers for their careful reading of the paper, giving valuable comments and suggestions. It is their contributions that greatly improve the paper. The authors also thank the editors for their kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yejuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by NSF of China (Grant No. 41875084), and by FEDER and Ministerio de Ciencia, Innovación y Universidades of Spain (Grant PGC2018-096540-B-I00) and Junta de Andalucia (Grant US-1254251).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, T., Wang, Y. & Caraballo, T. Stability of Fractionally Dissipative 2D Quasi-geostrophic Equation with Infinite Delay. J Dyn Diff Equat 33, 2047–2074 (2021). https://doi.org/10.1007/s10884-020-09883-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-020-09883-y

Keywords

Navigation