Skip to main content
Log in

Structurally Unstable Quadratic Vector Fields of Codimension Two: Families Possessing Either a Cusp Point or Two Finite Saddle-Nodes

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The goal of this paper is to contribute to the classification of the phase portraits of planar quadratic differential systems according to their structural stability. Artés et al. (Mem Am Math Soc 134:639, 1998) proved that there exist 44 structurally stable topologically distinct phase portraits in the Poincaré disc modulo limit cycles in this family, and Artés et al. (Structurally unstable quadratic vector fields of codimension one, Springer, Berlin, 2018) showed the existence of at least 204 (at most 211) structurally unstable topologically distinct phase portraits of codimension-one quadratic systems, modulo limit cycles. In this work we begin the classification of planar quadratic systems of codimension two in the structural stability. Combining the sets of codimension-one quadratic vector fields one to each other, we obtain ten new sets. Here we consider set AA obtained by the coalescence of two finite singular points, yielding either a triple saddle, or a triple node, or a cusp point, or two saddle-nodes. We obtain all the possible topological phase portraits of set AA and prove their realization. We got 34 new topologically distinct phase portraits in the Poincaré disc modulo limit cycles. Moreover, in this paper we correct a mistake made by the authors in the book of Artés et al. (Structurally unstable quadratic vector fields of codimension one, Springer, Berlin, 2018) and we reduce to 203 the number of topologically distinct phase portrait of codimension one modulo limit cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52

Similar content being viewed by others

References

  1. Andronov, A.A., Leontovich, E.A., Gordon, I.I., Maier, A.G.: Qualitative Theory of Second-Order Dynamic Systems. Israel Program for Scientific Translations, Halsted press, New York (1973)

    MATH  Google Scholar 

  2. Andronov, A.A., Leontovich, E.A., Gordon, I.I., Maier, A.G.: Theory of Bifurcation of Dynamic Systems on a Plane. Israel Program for Scientific Translations, Halsted Press, New York (1973)

    Google Scholar 

  3. Artés, J.C., Kooij, R., Llibre, J.: Structurally stable quadratic vector fields. Mem. Am. Math. Soc. 134, 639 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Artés, J.C., Llibre, J.: Quadratic vector fields with a weak focus of third order. Publ. Mat. 41, 7–39 (1997)

    Article  MathSciNet  Google Scholar 

  5. Artés, J.C., Llibre, J., Rezende, A.C.: Structurally Unstable Quadratic Vector Fields of Codimension One. Springer, Berlin (2018)

    Book  Google Scholar 

  6. Artés, J.C., Llibre, J., Schlomiuk, D., Vulpe, N.: From topological to geometric equivalence in the classification of singularities at infinity for quadratic vector fields. Rocky Mt. J. Math. 45, 29–113 (2015)

    Article  MathSciNet  Google Scholar 

  7. Artés, J.C., Llibre, J., Schlomiuk, D., Vulpe, N.: Geometric configurations of singularities of planar polynomial differential systems: A global classification in the quadratic case. Birkhäuser, Berlin (2020)

    MATH  Google Scholar 

  8. Artés, J.C., Oliveira, R.D.S., Rezende, A.C.: Topological classification of quadratic polynomial differential systems with a finite semi-elemental triple saddle. Int. J. Bifurc. Chaos 26, 26 (2016)

    Article  MathSciNet  Google Scholar 

  9. Artés, J.C., Rezende, A.C., Oliveira, R.D.S.: Global phase portraits of quadratic polynomial differential systems with a semi-elemental triple node. Int. J. Bifurc. Chaos 23, 21 (2013)

    Article  MathSciNet  Google Scholar 

  10. Artés, J.C., Rezende, A.C., Oliveira, R.D.S.: The geometry of quadratic polynomial differential systems with a finite and an infinite saddle-node \((c)\). Int. J. Bifurc. Chaos 25, 111 (2015)

    Article  MathSciNet  Google Scholar 

  11. Coppel, W.A.: A survey of quadratic systems. J. Differ. Equ. 2, 293–304 (1966)

    Article  MathSciNet  Google Scholar 

  12. Dumortier, F., Fiddelaers, P.: Quadratic models for generic local 3-parameter bifurcations on the plane. Trans. Am. Math. Soc. 326, 101–126 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Universitext. Springer, Berlin (2006)

    MATH  Google Scholar 

  14. Gasull, A., Li-Ren, Sheng, Llibre, J.: Chordal quadratic systems. Rocky Mt. J. Math. 16, 751–782 (1986)

    Article  MathSciNet  Google Scholar 

  15. Gonzales, E.A.V.: Generic properties of polynomial vector fields at infinity. Trans. Am. Math. Soc. 143, 201–222 (1969)

    Article  MathSciNet  Google Scholar 

  16. Hilbert, D.: Mathematische problem. In: Wiss, N.G. (ed.) Second Internet. Congress Math., Göttingen Math.–Phys. Kl., Paris, pp. 253–297 (1900)

  17. Hilbert, D.: Mathematical problems. Bull. Am. Math. Soc. 8, 437–479 (1902)

    Article  MathSciNet  Google Scholar 

  18. Hirsch, M.: Differential Topology. Springer, Berlin (1976)

    Book  Google Scholar 

  19. Jager, P.: Phase portraits for quadratics systems with a higher order singularity with two zero eigenvalues. J. Differ. Equ. 87, 169–204 (1990)

    Article  MathSciNet  Google Scholar 

  20. Llibre, J., Schlomiuk, D.: The geometry of quadratic differential systems with a weak focus of third order. Can. J. Math. 56, 310–343 (2004)

    Article  MathSciNet  Google Scholar 

  21. Neumann, D.: Classification of continuous flows on 2-manifolds. Proc. Am. Math. Soc. 48, 73–81 (1975)

    Article  MathSciNet  Google Scholar 

  22. Peixoto, M.M.: Structural stability on two-dimensional manifolds. Topology 1, 101–120 (1962)

    Article  MathSciNet  Google Scholar 

  23. Perko, L.: Differential Equations and Dynamical Systems. Texts in Applied Mathematics, vol. 7, 2nd edn. Springer, Berlin (1996)

    Book  Google Scholar 

  24. Poincaré, H.: Mémoire sur les courbes définies par une équation differentielle. J. Math. Pures Appl. 7, 375–422 (1881). (Ouvre (1880–1890))

    MATH  Google Scholar 

  25. Reyn, J.W.: Phase portraits of a quadratic system of differential equations occurring frequently in applications. Nieuw Archief voor Wiskunde (4),5 2, 107–155 (1987)

    MathSciNet  MATH  Google Scholar 

  26. Reyn, J.W.: Phase Portraits of Quadratic Systems Without Finite Critical Points, p. 36. Delft University of Technology, Faculty of Technical Mathematics and Informatics, Delft (1991)

    Google Scholar 

  27. Reyn, J.W.: A Bibliography of the Qualitative Theory of Quadratic Systems of Differential Equations in the Plane, 3rd edn. Delft University of Technology, Delft (1994)

    Google Scholar 

  28. Reyn, J.W.: Phase portraits of quadratic systems without finite critical points. Nonlinear Anal. 27, 207–222 (1996)

    Article  MathSciNet  Google Scholar 

  29. Reyn, J.W.: Phase portraits of quadratic systems with finite multiplicity one. Nonlinear Anal. 28, 755–778 (1997)

    Article  MathSciNet  Google Scholar 

  30. Reyn, J.W.: Phase Portraits of Planar Quadratic Systems. Mathematics and its Applications, vol. 583. Springer, New York (2007)

    MATH  Google Scholar 

  31. Sotomayor, J.: Curvas Definidas por Equações Diferenciais no Plano. Instituto de Matemática Pura e Aplicada, Rio de Janeiro (1979)

    Google Scholar 

  32. Vulpe, N.I.: Affine-invariant conditions for the topological discrimination of quadratic systems with a center. Differ. Equ. 19, 273–280 (1983)

    MATH  Google Scholar 

  33. Żoła̧dek, H.: Quadratic systems with center and their perturbations. J. Differ. Equ. 109, 223–273 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the reviewer of this paper for having indicated the manuscript for publication. This paper has been realized thanks to the Brazilian CAPES Agency (Grant BEX 13473/13-1), the Catalan AGAUR Agency (Grant 2017 SGR 1617), the Slovenian Research Agency (program P1-0306, project N1-0063), the Spanish Ministerio de Ciéncia, Innovación y Universidades (FEDER Grant MTM2016-77278-P), and the Brazilian FAPESP Agency (Proc. Nos. 2014/00304-2, 2017/20854-5, and 2018/21320-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex C. Rezende.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artés, J.C., Oliveira, R.D.S. & Rezende, A.C. Structurally Unstable Quadratic Vector Fields of Codimension Two: Families Possessing Either a Cusp Point or Two Finite Saddle-Nodes. J Dyn Diff Equat 33, 1779–1821 (2021). https://doi.org/10.1007/s10884-020-09871-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-020-09871-2

Keywords

Mathematics Subject Classification

Navigation