Skip to main content
Log in

On the Ambrosio–Figalli–Trevisan Superposition Principle for Probability Solutions to Fokker–Planck–Kolmogorov Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We prove a generalization of the known result of Trevisan on the Ambrosio–Figalli–Trevisan superposition principle for probability solutions to the Cauchy problem for the Fokker–Planck–Kolmogorov equation, according to which such a solution \(\{\mu _t\}\) with initial distribution \(\nu \) is represented by a probability measure \(P_\nu \) on the path space such that \(P_\nu \) solves the corresponding martingale problem and \(\mu _t\) is the one-dimensional distribution of \(P_\nu \) at time t. The novelty is that in place of the integrability of the diffusion and drift coefficients A and b with respect to the solution we require the integrability of \((\Vert A(t,x)\Vert +|\langle b(t,x),x\rangle |)/(1+|x|^2)\). Therefore, in the case where there are no a priori global integrability conditions the function \(\Vert A(t,x)\Vert +|\langle b(t,x),x\rangle |\) can be of quadratic growth. This is the first result in this direction that applies to unbounded coefficients without any a priori global integrability conditions. Moreover, we show that under mild conditions on the initial distribution it is sufficient to have the one-sided bound \(\langle b(t,x),x\rangle \le C+C|x|^2 \log |x|\) along with \(\Vert A(t,x)\Vert \le C+C|x|^2 \log |x|\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L.: Transport equation and Cauchy problem for non-smooth vector fields. Lect. Notes Math. 1927, 2–41 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L.: Well posedness of ODE’s and continuity equations with nonsmooth vector fields, and applications. Rev. Mat. Complut. 30(3), 427–450 (2017)

    Article  MathSciNet  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  4. Ambrosio, L., Trevisan, D.: Well-posedness of Lagrangian flows and continuity equations in metric measure spaces. Anal. PDE 7(5), 1179–1234 (2014)

    Article  MathSciNet  Google Scholar 

  5. Ambrosio, L., Trevisan, D.: Lecture notes on the DiPerna–Lions theory in abstract measure spaces. Ann. Fac. Sci. Toulouse Math. (6) 26(4), 729–766 (2017)

    Article  MathSciNet  Google Scholar 

  6. Barbu, V., Röckner, M.: Probabilistic representation for solutions to nonlinear Fokker–Planck equations. SIAM J. Math. Anal. 50(4), 4246–4260 (2018)

    Article  MathSciNet  Google Scholar 

  7. Barbu, V., Röckner, M.: From nonlinear Fokker–Planck equations to solutions of distribution dependent SDE. Ann. Probab. (2020) (accepted for publication) arXiv:1808.10706v4

  8. Bogachev, V.I.: Weak Convergence of Measures. Amer. Math. Soc, Rhode Island (2018)

    Book  Google Scholar 

  9. Bogachev, V.I., Da Prato, G., Röckner, M.: Existence and uniqueness of solutions for Fokker–Planck equations on Hilbert spaces. J. Evol. Equ. 10(3), 487–509 (2010)

    Article  MathSciNet  Google Scholar 

  10. Bogachev, V.I., Da Prato, G., Röckner, M.: Uniqueness for solutions of Fokker–Planck equations on infinite dimensional spaces. Commun. Partial Differ. Equ. 36(6), 925–939 (2011)

    Article  MathSciNet  Google Scholar 

  11. Bogachev, V.I., Da Prato, G., Röckner, M., Shaposhnikov, S.V.: An analytic approach to infinite-dimensional continuity and Fokker–Planck–Kolmogorov equations. Annali Scuola Norm. Pisa 14, 983–1023 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Bogachev, V.I., Krylov, N.V., Röckner, M.: Elliptic and parabolic equations for measures (Russian). Uspehi Matem. Nauk 64(6), 5–116 (translation in Russian Math. Surveys 64(6), 973–1078) (2009)

  13. Bogachev, V.I., Krylov, N.V., Röckner, M., Shaposhnikov, S.V.: Fokker–Planck–Kolmogorov equations. Amer. Math. Soc, Rhode Island (2015)

    Book  Google Scholar 

  14. Bogachev, V.I., Röckner, M., Shaposhnikov, S.V.: On uniqueness problems related to elliptic equations for measures. J. Math. Sci. (New York) 176(6), 759–773 (2011)

    Article  MathSciNet  Google Scholar 

  15. Bogachev, V.I., Röckner, M., Shaposhnikov, S.V.: On uniqueness problems related to the Fokker–Planck–Kolmogorov equation for measures. J. Math. Sci. (New York) 179(1), 7–47 (2011)

    Article  MathSciNet  Google Scholar 

  16. Bogachev, V.I., Röckner, M., Shaposhnikov, S.V.: On uniqueness of solutions to the Cauchy problem for degenerate Fokker–Planck–Kolmogorov equations. J. Evol. Equ. 13(3), 577–593 (2013)

    Article  MathSciNet  Google Scholar 

  17. Bogachev, V.I., Röckner, M., Shaposhnikov, S.V.: Uniqueness problems for degenerate Fokker–Planck–Kolmogorov equations. J. Math. Sci. (New York) 207(2), 147–165 (2015)

    Article  MathSciNet  Google Scholar 

  18. Bonicatto, P., Gusev, N.A.: Non-uniqueness of signed measure-valued solutions to the continuity equation in presence of a unique flow (2018). arXiv:1809.10216

  19. Ethier, S.N., Kurtz, T.G.: Markov Processes. Characterization and Convergence. Wiley, New York (1986)

    Book  Google Scholar 

  20. Figalli, A.: Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients. J. Funct. Anal. 254(1), 109–153 (2008)

    Article  MathSciNet  Google Scholar 

  21. Funaki, T.: A certain class of diffusion processes associated with nonlinear parabolic equations. Z. Wahrscheinlichkeitstheor. Verwandte Geb. 67, 331–348 (1984)

    Article  MathSciNet  Google Scholar 

  22. Kurtz, T.G.: Martingale problems for conditional distributions of Markov processes. Electron. J. Probab. 3(9), 29 (1998)

    MathSciNet  MATH  Google Scholar 

  23. Kurtz, T.G., Stockbridge, R.H.: Existence of Markov controls and characterization of optimal Markov controls. SIAM J. Control Optim. 36(2), 609–653 (1998)

    Article  MathSciNet  Google Scholar 

  24. Kurtz, T.G.: Equivalence of stochastic equations and martingale problems. In: Crisan, D. (ed.) Stochastic Analysis 2010, pp. 113–130. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Le Bris, C., Lions, P.-L.: Existence and uniqueness of solutions to Fokker–Planck type equations with irregular coefficients. Commun. Partial Differ. Equ. 33(7–9), 1272–1317 (2008)

    Article  MathSciNet  Google Scholar 

  26. Luo, D.: The Itô SDEs and Fokker–Planck equations with Osgood and Sobolev coefficients. Stochastics 90(3), 379–410 (2018)

    Article  MathSciNet  Google Scholar 

  27. Manita, O.A., Romanov, M.S., Shaposhnikov, S.V.: On uniqueness of solutions to nonlinear Fokker–Planck–Kolmogorov equations. Nonlinear Anal. 128, 199–226 (2015)

    Article  MathSciNet  Google Scholar 

  28. Manita, O.A., Shaposhnikov, S.V.: Nonlinear parabolic equations for measures (Russian). Algebra i Analiz 25(1), 64–93 (translation in St. Petersburg Math. J. 25(1), 43–62 (2014)) (2013)

  29. Manita, O.A., Shaposhnikov, S.V.: On the Cauchy problem for Fokker–Planck–Kolmogorov equations with potential terms on arbitrary domains. J. Dyn. Differ. Equ. 28, 493–518 (2016)

    Article  MathSciNet  Google Scholar 

  30. Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  31. Röckner, M., Zhang, X.: Weak uniqueness of Fokker–Planck equations with degenerate and bounded coefficients. C. R. Math. Acad. Sci. Paris 348(7–8), 435–438 (2010)

    Article  MathSciNet  Google Scholar 

  32. Shaposhnikov, S.V.: On the uniqueness of the probabilistic solution of the Cauchy problem for the Fokker–Planck–Kolmogorov equation (Russian). Teor. Veroyatn. Primen. 56(1), 77–99 (translation in Theory Probab. Appl. 56(1), 96–115 (2012)) (2011)

  33. Stepanov, E., Trevisan, D.: Three superposition principles: currents, continuity equations and curves of measures. J. Funct. Anal. 272(3), 1044–1103 (2017)

    Article  MathSciNet  Google Scholar 

  34. Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin (2006)

    MATH  Google Scholar 

  35. Trevisan, D.: Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients. Electron. J. Probab. 21, Paper No. 22, 41 pp (2016)

  36. Zhang, X.: Stochastic Hamiltonian flows with singular coefficients. Sci. China Math. 61(8), 1353–1384 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the RFBR Grant 18-31-20008, the CRC 1283 at Bielefeld University, and the DFG Grant DFG RO 1195/12-1. We are very grateful to the anonymous referee for thorough reading and useful corrections and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Bogachev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogachev, V.I., Röckner, M. & Shaposhnikov, S.V. On the Ambrosio–Figalli–Trevisan Superposition Principle for Probability Solutions to Fokker–Planck–Kolmogorov Equations. J Dyn Diff Equat 33, 715–739 (2021). https://doi.org/10.1007/s10884-020-09828-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-020-09828-5

Keywords

Mathematics Subject Classification

Navigation