Skip to main content
Log in

Stability of the Rhombus Vortex Problem with a Central Vortex

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We characterize the type stability of the five-vortex problem in the plane, where it is assumed that configuration is a rhombus vortex problem with a central vortex. More precisely, we suppose that the opposite vortices have the same vorticity \(\Gamma _1=\Gamma _2=1\) and \(\Gamma _3=\Gamma _4=\Gamma \ne 0\) and the vortex at the center has vorticity \(\Gamma _0\ne 0\). The stability is given in terms of the size of the rhombus and the vorticities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aref, H.: Stability of relative equilibria of three vortices. Phys. Fluids 21(9), 094101 (2009)

    Article  Google Scholar 

  2. Aref, H.: On the equilibrium and stability of a row of point vortices. J. Fluid Mech. 290, 161–181 (1995)

    Article  MathSciNet  Google Scholar 

  3. Aref, H.: Point vortex dynamics: a classical mathematics playground. J. Math. Phys. 48(6), 065401, 23 (2007)

    Article  MathSciNet  Google Scholar 

  4. Aref, H., Newton, P.K., Stremler, M.A., Tokieda, T., Vainchtein, D.L.: Vortex crystals. Adv. Appl. Mech. 39, 39–46 (2003)

    Google Scholar 

  5. Aref, H., Rott, N., Thomann, H.: Gröbli’s solution of the three-vortex problem. Annu. Rev. Fluid Mech 24, 1–21 (1992)

    Article  Google Scholar 

  6. Boatto, S., Pierrehumbert, R.: Dynamics of a passive tracer in a velocity field of four identical point vortices. J. Fluid Mech. 394, 137–174 (1999)

    Article  MathSciNet  Google Scholar 

  7. Boatto, S.: The Poisson equation, the Robin function and singularities’s dynamics: an hydrodynamic approach, preprint

  8. Boffetta, G., Celani, A., Franzese, P.: Trapping of passive tracers in a point vortex system. J. Phys. A Math. Gen. 29, 3749 (1996)

    Article  MathSciNet  Google Scholar 

  9. Cabral, H.E., Schmidt, D.S.: Stability of relative equilibria in the problem of $N+1$ vortices. SIAM J. Math Anal. 31(2), 231–250 (1999)

    Article  MathSciNet  Google Scholar 

  10. Chorin, J.A., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics. Texts in Applied Mathematics, 3rd edn. Springer, Berlin (1992)

    MATH  Google Scholar 

  11. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  12. Flór, J.-B.: Coherent Vortex Structures in Stratified Fluids, PhD Thesis Technische Universiteit Eindhoven (1994)

  13. Gröbli, W.: Specielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden. Zürcher und Furrer, Zürich. Republished in Vierteljahrschrift der naturforschenden Gesellschaft in Züurich, 22, 37–81, 129–167 (1877)

  14. Hampton, Marshall, Roberts, Gareth E., Santoprete, Manuele: Relative equilibria in the four-vortex problem with two pairs of equal vorticities. J. Nonlinear Sci. 24(1), 39–92 (2014)

    Article  MathSciNet  Google Scholar 

  15. Havelock, T.: The stability of motion of rectilinear vortices in ring formation. Philos. Mag. 11, 617–633 (1931)

    Article  Google Scholar 

  16. Helmholtz, H.: On the integrals of the hydrodynamical equations, which express vortex motion. Philos. Mag. 33, 485–510 (1867)

    Article  Google Scholar 

  17. Helmholtz, H.: Uber Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. Journal fur die reine und angewandte Mathematik 55, 25–55 (1858)

    MathSciNet  Google Scholar 

  18. Kelvin, L.: Mathematical and Physical Papers. Cambridge University Press, Cambridge (1910)

    MATH  Google Scholar 

  19. Kelvin, L.: On vortex atoms. Proc. R. Soc. Edinburgh 6, 94–105 (1867)

    Google Scholar 

  20. Kirchhoff, G.R.: Vorlesungen Über Mathematische Physik. Teubner, Laipzig V1 (1876)

  21. Kloosterziel, R.C., van Heijst, G.J.F.: An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech. 223, 1–24 (1991)

    Article  Google Scholar 

  22. Koiller, J., Carvalho, S.P.: Non-integrability of the 4-vortex system: analytical proof. Commun. Math. Phys. 120, 643–652 (1989)

    Article  Google Scholar 

  23. Neufeld, Z., Tel, T.: The vortex dynamics analogue of the restricted three-body problem: advection in the field of three identical point vortices. J. Phys. A Math. Gen. 30, 2263–2280 (1997)

    Article  MathSciNet  Google Scholar 

  24. Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. AMS 96. Springer, New York (1994)

    Book  Google Scholar 

  25. Newton, P.K.: The N-Vortex Problem: Analytical Techniques. Applied Mathematical Sciences, vol. 145. Springer, Berlin (2001)

    Book  Google Scholar 

  26. Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. Gauthier, Paris (1989)

    Google Scholar 

  27. Roberts, G.E.: A continuum of relative equilibria in the five-body problem. Phys. D 127, 141–145 (1999)

    Article  MathSciNet  Google Scholar 

  28. Roberts, Gareth E.: Stability of relative equilibria in the planar n-vortex problem. SIAM J. Appl. Dyn. Syst. 12(2), 1114–1134 (2013)

    Article  MathSciNet  Google Scholar 

  29. Rom-Kedar, V.: Part I: An analytical study of transport, mixing and chaos in an unsteady vortical floaref-7w. Part II: Transport in two-dimensional maps. Thesis (Ph.D.) California Institute of Technology. 162 pp (1989)

  30. Synge, J.: On the motion of three vortices. Can. J. Math. 1, 257–270 (1949)

    Article  MathSciNet  Google Scholar 

  31. Thomson, A.: Treatise on the Motion of Vortex Rings, Macmillan, London (1883); reprinted, Elibron Classics (2006)

  32. van Heijst, G.F.J., Kloosterziel, R.C.: Tripolar vortices in a rotating fluid. Nature 338, 569–571 (1989)

    Article  Google Scholar 

  33. van Heijst, G.J.F., Kloosterziel, R.C., Williams, C.W.M.: Formation of a tripolar vortex in a rotating fluid. Phys. Fluids A 3, 2033 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allyson Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, A., Vidal, C. Stability of the Rhombus Vortex Problem with a Central Vortex. J Dyn Diff Equat 32, 2109–2123 (2020). https://doi.org/10.1007/s10884-019-09805-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-019-09805-7

Keywords

Mathematics Subject Classification

Navigation