Skip to main content
Log in

On the Classification of Finite-Dimensional Linear Flows

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

New elementary, self-contained proofs are presented for the topological and the smooth classification theorems of linear flows on finite-dimensional normed spaces. The arguments, and the examples that accompany them, highlight the fundamental roles of linearity and smoothness more clearly than does the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, National Bureau of Standards. Applied Mathematics Series vol. 55 (1964)

  2. Aeppli, A., Markus, L.: Integral equivalence of vector fields on manifolds and bifurcation of differential systems. Am. J. Math. 85, 633–654 (1963)

    Google Scholar 

  3. Amann, H.: Ordinary Differential Equations: An Introduction to Non-linear Analysis. deGruyter, Berlin (1990)

    Google Scholar 

  4. Arnold, V.I.: Ordinary Differential Equations, 3rd edn. Springer, New York (1992)

    Google Scholar 

  5. Arrowsmith, D.K., Place, C.M.: An Introduction to Dynamical Systems. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  6. Ayala, V., Colonius, F., Kliemann, W.: Dynamical characterization of the Lyapunov form of matrices. Linear Algebra Appl. 402, 272–290 (2005)

    Google Scholar 

  7. Ayala, V., Colonius, F., Kliemann, W.: On topological equivalence of linear flows with applications to bilinear control systems. J. Dyn. Control Syst. 13, 337–362 (2007)

    Google Scholar 

  8. Ayala, V., Kawan, C.: Topological conjugacy of real projective flows. J. Lond. Math. Soc. (2) 90, 49–66 (2014)

    Google Scholar 

  9. Bathia, N.P., Szegö, G.P.: Stability Theory of Dynamical Systems, Grundlehren der mathematischen Wissenshaften, vol. 161. Springer, New York (1970)

    Google Scholar 

  10. Cappell, S.E., Shaneson, J.L.: Nonlinear similarity. Ann. Math. (2) 113, 315–355 (1981)

    Google Scholar 

  11. Cappell, S.E., Shaneson, J.L., Steinberger, M., West, J.E.: Nonlinear similarity begins in dimension six. Am. J. Math. 111, 717–752 (1989)

    Google Scholar 

  12. Colonius, F., Kliemann, W.: Dynamical Systems and Linear Algebra, Graduate Studies in Mathematics, vol. 158. American Mathematical Society, Providence (2014)

    Google Scholar 

  13. Colonius, F., Santana, A.J.: Topological conjugacy for affine-linear flows and control systems. Commun. Pure Appl. Anal. 10, 847–857 (2011)

    Google Scholar 

  14. Cong, N.D.: Topological classification of linear hyperbolic cocycles. J. Dyn. Differ. Equ. 8, 427–467 (1996)

    Google Scholar 

  15. Cruz, R.N.: Linear and Lipschitz similarity. Linear Algebra Appl. 151, 17–25 (1991)

    Google Scholar 

  16. Da Silva, A., Santana, A.J., Stelmastchuk, S.N.: Topological conjugacy of linear systems on Lie groups, Discrete Contin. Dyn. Syst. 37, 3411–3421 (2017)

    Google Scholar 

  17. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  18. He, T.: Topological Conjugacy of Non-hyperbolic Linear Flows (preprint) (2017). arXiv:1703.4413

  19. Hsiang, W.C., Pardon, W.: When are topologically equivalent orthogonal transformations linearly equivalent? Invent. Math. 68, 275–316 (1982)

    Google Scholar 

  20. Irwin, M.C.: Smooth Dynamical Systems, Advanced Series in Nonlinear Dynamics, vol. 17. World Scientific, Singapore (2001)

    Google Scholar 

  21. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, vol. 54. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  22. Kawan, C., Stender, T.: Lipschitz conjugacy of linear flows. J. Lond. Math. Soc. 2(80), 699–715 (2009)

    Google Scholar 

  23. Kawan, C., Rocío, O.G., Santana, A.J.: On topological conjugacy of left invariant flows on semisimple and affine Lie groups. Proyecciones 30, 175–188 (2011)

    Google Scholar 

  24. Kuiper, N.H.: The topology of the solutions of a linear differential equation on \(R^{n}\). In: Manifolds–Tokyo 1973 (Proceedings of International Conference, Tokyo, 1973), pp. 195–203. Univ. Tokyo Press, Tokyo (1975)

  25. Kuiper, N.H., Robbin, J.W.: Topological classification of linear endomorphisms. Invent. Math. 19, 83–106 (1973)

    Google Scholar 

  26. Ladis, N.N.: Topological equivalence of linear flows. Differencialnye Uravnenija 9, 1222–1235 (1973)

    Google Scholar 

  27. Li, J., Zhang, Z.: Topological classification of linear control systems—an elementary analytic approach. J. Math. Anal. Appl. 402, 84–102 (2013)

    Google Scholar 

  28. Markus, L.: Topological types of polynomial differential equations. Trans. Am. Math. Soc. 171, 157–178 (1972)

    Google Scholar 

  29. McSwiggen, P.D., Meyer, K.R.: Conjugate phase portraits of linear systems. Am. Math. Mon. 115, 596–614 (2008)

    Google Scholar 

  30. Meiss, J.D.: Differential Dynamical Systems, Mathematical Modeling and Computation, vol. 14. SIAM, Philadelphia (2007)

    Google Scholar 

  31. Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. Springer, New York (1982)

    Google Scholar 

  32. Perko, L.: Differential Equations and Dynamical Systems, Texts in Applied Mathematics, vol. 7. Springer, New York (2001)

    Google Scholar 

  33. Robinson, C.: Dynamical Systems. Stability, Symbolic Dynamics, and Chaos. CRC Press, Boca Raton (1995)

    Google Scholar 

  34. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, vol. 2. Springer, New York (1990)

    Google Scholar 

  35. Willems, J.C.: Topological classification and structural stability of linear systems. J. Differ. Equ. 35, 306–318 (1980)

    Google Scholar 

  36. Wynne, A.: Classification of linear flows. MSc thesis, University of Alberta (2016)

  37. Wynne, A.: The classification of linear flows—supplementary material (in preparation)

Download references

Acknowledgements

The first author was partially supported by an Nserc Discovery Grant. The authors gratefully acknowledge helpful comments and suggestions made by C. Kawan, T. Oertel-Jäger, G. Peschke, C. Pötzsche, and V. Troitsky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno Berger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, A., Wynne, A. On the Classification of Finite-Dimensional Linear Flows. J Dyn Diff Equat 32, 23–59 (2020). https://doi.org/10.1007/s10884-018-9717-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-018-9717-4

Keywords

Mathematics Subject Classification

Navigation