Advertisement

Large-Time Behavior of a Linear Boussinesq System for the Water Waves

  • George J. Bautista
  • Ademir F. PazotoEmail author
Article
  • 76 Downloads

Abstract

In this paper we are concerned with a linear Boussinesq system of Benjamin–Bona–Mahony type modelling the two-way propagation of surface waves in a uniform horizontal channel filled with an irrotational, incompressible and inviscid liquid under the influence of gravitation. We propose several dissipation mechanisms leading to systems for which one has both the global existence of solutions and a nonincreasing energy. Following the analysis developed in Rosier (J Math Study 49:195–204, 2016) we prove that all the trajectories are attracted by the origin provided that the unique continuation of weak solutions holds.

Keywords

Boussinesq system Benjamin–Bona–Mahony equation Unique continuation property Stabilization 

Notes

Acknowledgements

The authors thank the anonymous referees for their helpful comments and suggestions. GJB was supported by Capes and Faperj (Brazil) and AFP was partially supported by CNPq (Brazil).

References

  1. 1.
    Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear, dispersive media. Philos. Trans. R. Soc. Lond. Ser. A 272, 47–78 (1972)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bona, J.L., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: Derivation and linear theory. J. Nonlinear Sci. 12, 283–318 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bona, J.L., Colin, T., Lannes, D.: Long wave approximations for water waves. Arch. Ration. Mech. Anal. 178, 373–410 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boussinesq, J.: Théorie de l’intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. C. R. Acad. Sci. 72, 755–759 (1871)zbMATHGoogle Scholar
  5. 5.
    Capistrano-Filho, R.A., Pazoto, A.F., Rosier, L.: Control of a Boussinesq system of KdV–KdV type on a bounded interval. arXiv:1401.6833 (2017)
  6. 6.
    Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a retangular canal, and on a new type of long stacionary waves. Philos. Mag. 39, 422–423 (1895)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Micu, S., Pazoto, A.F.: Stabilization of a Boussinesq system with localized damping. J. Anal. Math. (to appear) Google Scholar
  8. 8.
    Micu, S., Pazoto, A.F.: Stabilization of a Boussinesq system with generalized damping. Syst. Control Lett. 105, 62–69 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Micu, S., Ortega, J., Rosier, L., Zhang, B.-Y.: Control and stabilization of a family of Boussinesq systems. Discret. Contin. Dyn. Syst. 24, 273–313 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Pazoto, A.F., Rosier, L.: Stabilization of a Boussinesq system of KdV–KdV type. Syst. Control Lett. 57, 595–601 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Peregrine, D.H.: Calculations of the development of an undular bore. J. Fluid Mech. 25, 321–330 (1966)CrossRefGoogle Scholar
  12. 12.
    Rosier, L.: On the Benjamin–Bona–Mahony equation with a localized damping. J. Math. Study 49, 195–204 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rosier, L., Zhang, B.-Y.: Unique continuation property and control for the Benjamin–Bona–Mahony equation on a periodic domain. J. Differ. Equ. 254, 141–178 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MathematicsFederal University of Rio de Janeiro, UFRJRio de JaneiroBrazil

Personalised recommendations