Rotating Wave Solutions to Lattice Dynamical Systems II: Persistence Results

  • Jason J. BramburgerEmail author


This work comes as the second part in a series of investigations into the dynamics of rotating waves as solutions to lattice dynamical systems. Such nonlinear waves as solutions to mathematical equations are of great interest throughout the physical sciences due to their association with many electrophysiological pathologies and this investigation aims to further the understanding of rotating waves from a mathematical perspective. Here we focus on so-called Lambda–Omega differential equations, a well-studied generalization of the celebrated Ginzburg–Landau equation, to show that there exists an interval of sufficiently small coupling values for which a rotating wave solution persists. This result is achieved using a wide range of functional analytic tools, primarily in an effort to apply a non-standard implicit function theorem. This work initiates subsequent studies into the dynamics and bifurcations of rotating waves away from the reaction–diffusion equation setting to differential equations for which traditional symmetry based centre manifold reductions cannot be applied.


Rotating waves Lattice dynamical systems Alternative implicit function theorem 



This work was supported by an Ontario Graduate Scholarship while at the University of Ottawa. The author is very thankful to his supervisors Benoit Dionne and Victor LeBlanc for their guidance on all matters related to the work.


  1. 1.
    Ashwin, P., Melbourne, I., Nicol, M.: Drift bifurcations of relative equilibria and transitions of spiral waves. Nonlinearity 12, 741–755 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beaumont, J., Davidenko, N., Davidenko, J., Jalife, J.: Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core. Biophys. J. 75, 1–14 (1998)CrossRefGoogle Scholar
  3. 3.
    Bramburger, J.: Rotating wave solutions to lattice dynamical systems I: the anti-continuum limit. J. Dyn. Differ. Equ. (in press)Google Scholar
  4. 4.
    Cahn, J.: Theory of crystal growth and interface motion in crystalline materials. Acta Metal. 8, 554–562 (1960)CrossRefGoogle Scholar
  5. 5.
    Cohen, D., Neu, J., Rosales, R.: Rotating spiral wave solutions of reaction–diffusion equations. SIAM J. Appl. Math. 35, 536–547 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cook, H., de Fontaine, D., Hillard, J.: A model for diffusion of cubic lattices and its application to the early stages of ordering. Acta Metal. 17, 765–773 (1969)CrossRefGoogle Scholar
  7. 7.
    Craven, B., Nashed, M.: Generalized implicit function theorems when the derivative has no bounded inverse. Nonlinear Anal. Theor. 6, 375–387 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ellison, R., Gardner, V., Lepak, J., O’Malley, M., Paullet, J., Previte, J., Reid, B., Vizzard, K.: Pattern formation in small arrays of locally coupled oscillators. Int. J. Bifur. Chaos 15, 2283–2293 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ermentrout, G.B.: Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators. SIAM J. Appl. Math. 52, 1665–1687 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ermentrout, G.B., Kopell, N.: Phase transitions and other phenomena in chains of coupled oscillators. SIAM J. Appl. Math. 50, 1014–1052 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ermentrout, G.B., Paullet, J.: Spiral waves in spatially discrete \(\lambda -\omega \) systems. Int. J. Bifur. Chaos 8, 33–40 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Ermentrout, G.B., Paullet, J., Troy, W.: The existence of spiral waves in an oscillatory reaction–diffusion system. SIAM J. Appl. Math. 54, 1386–1401 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Erneux, T., Nicolis, G.: Propagating waves in discrete bistable reaction–diffusion systems. Physica D 67, 237–244 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Firth, W.: Optical memory and spatial chaos. Phys. Rev. Lett. 61, 329–332 (1988)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Goldberg, S.: Unbounded Linear Operators. Dover Publications Inc, New York (1985)zbMATHGoogle Scholar
  16. 16.
    Golubitsky, M., LeBlanc, V., Melbourne, I.: Meandering of the spiral tip: an alternative approach. Nonlinear Sci. 7, 557–586 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gorelova, N.A., Bures, J.: Spiral waves of spreading depression in the isolated chicken retina. J. Neurobiol. 14, 353–363 (1983)CrossRefGoogle Scholar
  18. 18.
    Greenberg, J.: Spiral waves for \(\lambda -\omega \) systems. SIAM J. Appl. Math. 39, 301–309 (1980)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Howard, L., Kopell, N.: Plane wave solutions in reaction–diffusion equations. Stud. Appl. Math. 52, 291–328 (1973)CrossRefzbMATHGoogle Scholar
  20. 20.
    Howard, L., Kopell, N.: Target pattern and spiral solutions to reaction–diffusion equations with more than one space dimension. Adv. Appl. Math. 2, 417–449 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Huang, X., Troy, W.C., Yang, Q., Ma, H., Laing, C.R., Schi, S.J., Yu, J.Y.: Spiral waves in disinhibited mammalian neocortex. J. Neurosci. 24, 9897–9902 (2004)CrossRefGoogle Scholar
  22. 22.
    Hwang, S., Kim, T., Lee, K.: Complex-periodic spiral waves in confluent cardiac cell cultures induced by localized inhomogeneities. PNAS 102, 10363–10368 (2005)CrossRefGoogle Scholar
  23. 23.
    Keener, J., Sneyd, J.: Mathematical Physiology, Interdisciplinary Applied Mathematics 8. Springer, New York (1998)zbMATHGoogle Scholar
  24. 24.
    Laplante, J.P., Erneux, T.: Propagation failure in arrays of coupled bistable chemical reactors. J. Phys. Chem. 96, 4931–4934 (1992)CrossRefGoogle Scholar
  25. 25.
    Müller, S.C., Steinbock, O.: Multi-armed spirals in a light-controlled excitable reaction. Int. J. Bifur. Chaos 03, 437 (1993)CrossRefzbMATHGoogle Scholar
  26. 26.
    Reed, M., Simon, B.: Functional Analysis. Academic Press, New York (1972)zbMATHGoogle Scholar
  27. 27.
    Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973)zbMATHGoogle Scholar
  28. 28.
    Sandstede, B., Scheel, A., Wulff, C.: Center manifold reductions for spiral waves. C. R. Acad. Sci. 324, 153–158 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Sandstede, B., Scheel, A., Wulff, C.: Dynamics of spiral waves on unbounded domains using center-manifold reductions. J. Differ. Equ. 141, 122–149 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Sandstede, B., Scheel, A., Wulff, C.: Bifurcations and dynamics of spiral waves. J. Nonlinear Sci. 9, 439–478 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Santos, E., Schöll, M., Sánchez-Porras, R., Dahlem, M.A., Silos, H., Unterberg, A., Dickhaus, H., Sakowitz, O.W.: Radial, spiral and reverberating waves of spreading depolarization occur in the gyrencephalic brain. Neuroimage 99, 244–255 (2014)CrossRefGoogle Scholar
  32. 32.
    Schechter, E.: Handbook of Analysis and Its Foundations. Academic Press, Cambridge (1997)zbMATHGoogle Scholar
  33. 33.
    Teman, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)CrossRefGoogle Scholar
  34. 34.
    Winfree, A.T.: The geometry of biological time. In: Biomathematics, vol. 8. Springer, New York (1980)Google Scholar
  35. 35.
    Winfree, A.T.: Spiral waves of chemical activity. Science 175, 634–636 (1972)CrossRefGoogle Scholar
  36. 36.
    Zinner, B.: Existence of traveling wavefront solutions for the discrete Nagumo equation. J. Differ. Equ. 96, 1–27 (1992)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations