Skip to main content

Transition Fronts of Combustion Reaction Diffusion Equations in \(\mathbb {R}^{N}\)

Abstract

This paper is concerned with combustion transition fronts in \(\mathbb {R}^{N}\)\((N\ge 1)\). Firstly, we prove the existence and the uniqueness of the global mean speed which is independent of the shape of the level sets of the fronts. Secondly, we show that the planar fronts can be characterized in the more general class of almost-planar fronts. Thirdly, we show the existence of new types of transitions fronts in \(\mathbb {R}^{N}\) which are not standard traveling fronts. Finally, we prove that all transition fronts are monotone increasing in time, whatever shape their level sets may have.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion and nerve propagation. In: Lecture Notes in Math. Partial Differential Equations and Related Topics, vol. 446, Springer, New York, pp. 5–49 (1975)

  2. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusions arising in population genetics. Adv. Math. 30, 33–76 (1978)

    MathSciNet  Article  Google Scholar 

  3. Berestycki, H., Hamel, F.: Generalized travelling waves for reaction–diffusion equations. In: Honor of H. Brezis, Perspectives in Nonlinear Partial Differential Equations, Contemporary Mathematics, vol. 446. Amer. Math. Soc., pp. 101–123 (2007)

  4. Berestycki, H., Hamel, F.: Generalized transition waves and their properties. Commun. Pure Appl. Math. 65, 592–648 (2012)

    MathSciNet  Article  Google Scholar 

  5. Berestycki, H., Nicolaenko, B., Scheurer, B.: Traveling waves solutions to combustion models and their singular limits. SIAM J. Math. Anal. 16, 1207–1242 (1985)

    MathSciNet  Article  Google Scholar 

  6. Brazhnik, P.K.: Exact solutions for the kinematic model of autowaves in two-dimensional excitable media. Physica D 94, 205–220 (1996)

    Article  Google Scholar 

  7. Bu, Z.-H., Wang, Z.-C.: Stability of pyramidal traveling fronts in the degenerate monostable and combustion equations I. Discrete Contin. Dyn. Syst. 37, 2395–2430 (2017)

    MathSciNet  Article  Google Scholar 

  8. Bu, Z.-H., Wang, Z.-C.: Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media. Commun. Pure Appl. Anal. 15, 139–160 (2016)

    MathSciNet  Article  Google Scholar 

  9. Fife, P.C., McLeod, J.B.: The approach of solutions of non-linear diffusion equations to traveling front solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977)

    MathSciNet  Article  Google Scholar 

  10. Guo, H., Hamel, F.: Monotonicity of bistable transition fronts in \(\mathbb{R}^N\). J. Elliptic Parabol. Equ. 2, 145–155 (2016)

    MathSciNet  Article  Google Scholar 

  11. Hamel, F.: Bistable transition fronts in \(\mathbb{R}^{N}\). Adv. Math. 289, 279–344 (2016)

    MathSciNet  Article  Google Scholar 

  12. Hamel, F., Monneau, R.: Solutions of semilinear elliptic equations in \(\mathbb{R}^{N}\) with conical-shaped level sets. Commun. Partial Differ. Equ. 25, 769–819 (2000)

    Article  Google Scholar 

  13. Hamel, F., Monneau, R., Roquejoffre, J.-M.: Existence and qualitative properties of multidimensional conical bistable fronts. Discrete Contin. Dyn. Syst. 13, 1069–1096 (2005)

    MathSciNet  Article  Google Scholar 

  14. Hamel, F., Monneau, R., Roquejoffre, J.-M.: Asymptotic properties and classification of bistable fronts with Lipschitz level sets. Discrete Contin. Dyn. Syst. 14, 75–92 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Hamel, F., Rossi, L.: Admissible speeds of transition fronts for non-autonomous monostable equations. SIAM J. Math. Anal. 47, 3342–3392 (2015)

    MathSciNet  Article  Google Scholar 

  16. Hamel, F., Roques, L.: Transition fronts for the Fisher-KPP equation. Trans. Am. Math. Soc. 368, 8675–8713 (2016)

    MathSciNet  Article  Google Scholar 

  17. Kanel’, JaI: Stabilization of solution of the Cauchy problem for equations encountered in combustion theory. Mat. Sb. 59, 245–288 (1962)

    MathSciNet  Google Scholar 

  18. Ma, S., Zhao, X.-Q.: Global asymptotic stability of minimal fronts in monostable lattice equations. Discrete Contin. Dyn. Syst. 21, 259–275 (2008)

    MathSciNet  Article  Google Scholar 

  19. Mellet, A., Nolen, J., Roquejoffre, J.-M., Ryzhik, L.: Stability of generalized transition fronts. Commun. Partial Differ. Equ. 34, 521–552 (2009)

    MathSciNet  Article  Google Scholar 

  20. Mellet, A., Roquejoffre, J.-M., Sire, Y.: Grneralized fronts for one-dimensional reaction–diffusion equations. Discrete Contin. Dyn. Syst. 26, 303–312 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Nadin, G.: Critical travelling waves for general heterogeneous one-dimensional reaction–diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire. 32, 841–873 (2015)

    MathSciNet  Article  Google Scholar 

  22. Nadin, G., Rossi, L.: Propagation phenomena for time heterogeneous KPP reaction–diffusion equations. J. Math. Pures Appl. 98, 633–653 (2012)

    MathSciNet  Article  Google Scholar 

  23. Nadin, G., Rossi, L.: Transition waves for Fisher-KPP equations with general time-heterogeneous and space periodic coefficients. Anal. PDE 8, 1351–1377 (2015)

    MathSciNet  Article  Google Scholar 

  24. Ninomiya, H., Taniguchi, M.: Existence and global stability of traveling curved fronts in the Allen–Cahn equations. J. Differ. Equ. 213, 204–233 (2005)

    MathSciNet  Article  Google Scholar 

  25. Ninomiya, H., Taniguchi, M.: Global stability of traveling curved fronts in the Allen–Cahn equations. Discrete Contin. Dyn. Syst. 15, 819–832 (2006)

    MathSciNet  Article  Google Scholar 

  26. Ninomiya, H., Taniguchi, M.: Stability of traveling curved fronts in a curvature flow with driving force. Methods Appl. Anal. 8, 429–450 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Ninomiya, H., Taniguchi, M.: Traveling curved fronts of a mean curvature flow with constant driving force. In: Free Boundary Problems: Theory and Applications I. GAKUTO International Series. Mathematical Sciences and Applications, vol. 13, pp. 206–221 (2000)

  28. Nolen, J., Roquejoffre, J.-M., Ryzhik, L., Zlatos̆, A.: Existence and non-existence of Fisher-KPP transition fronts. Arch. Ration. Mech. Anal. 203, 217–246 (2012)

    MathSciNet  Article  Google Scholar 

  29. Nolen, J., Ryzhik, L.: Traveling waves in a one-dimensional heterogeneous medium. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 1021–1047 (2009)

    MathSciNet  Article  Google Scholar 

  30. Shen, W.: Traveling waves in diffusive random media. J. Dyn. Differ. Equ. 16, 1011–1060 (2004)

    MathSciNet  Article  Google Scholar 

  31. Shen, W.: Existence, uniqueness, and stability of generalized traveling waves in time dependent monostable equations. J. Dyn. Differ. Equ. 23, 1–44 (2011)

    MathSciNet  Article  Google Scholar 

  32. Shen, W., Shen, Z.: Stability, uniqueness and recurrence of generalized traveling waves in time heterogeneous media of ignition type. Trans. Am. Math. Soc. 369, 2573–2613 (2017)

    MathSciNet  Article  Google Scholar 

  33. Taniguchi, M.: Traveling fronts of pyramidal shapes in the Allen–Cahn equation. SIAM J. Math. Anal. 39, 319–344 (2007)

    MathSciNet  Article  Google Scholar 

  34. Taniguchi, M.: The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen–Cahn equations. J. Differ. Equ. 246, 2103–2130 (2009)

    MathSciNet  Article  Google Scholar 

  35. Taniguchi, M.: Multi-dimensional traveling fronts in bistable reaction–diffusion equations. Discrete Contin. Dyn. Syst. 32, 1011–1046 (2012)

    MathSciNet  Article  Google Scholar 

  36. Wang, Z.-C., Bu, Z.-H.: Nonplanar traveling fronts in reaction–diffusion equations with combustion and degenerate Fisher-KPP nonlinearities. J. Differ. Equ. 260, 6405–6450 (2016)

    MathSciNet  Article  Google Scholar 

  37. Zlatos̆, A.: Generalized traveling waves in disordered media: existence, uniqueness, and stability. Arch. Ration. Mech. Anal. 208, 447–480 (2013)

    MathSciNet  Article  Google Scholar 

  38. Zlatos̆, A.: Transition fronts in inheomogeneous Fisher-KPP reaction–diffusion equations. J. Math. Pures Appl. 98, 89–102 (2012)

    MathSciNet  Article  Google Scholar 

  39. Zlatos̆, A.: Propagation of reactions in inhomogeneous media. Commun. Pure Appl. Math. 70, 884–949 (2017)

    MathSciNet  Article  Google Scholar 

  40. Zlatos̆, A.: Existence and non-existence of transition fronts for bistable and ignition reactions. Ann. Inst. H. Poincaré Anal. Non Linéaire 34, 1687–1705 (2017)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The first author and the second author would like to thank Professor François Hamel of Aix-Marseille University for the valuable discussions. They was supported by the China Scholarship Council. The third author was supported by NNSF of China (11371179, 11731005) and the Fundamental Research Funds for the Central Universities (lzujbky-2017-ot09, lzujbky-2016-ct12, lzujbky-2017-ct01). This work has been partly carried out in the framework of the ANR DEFI Project NONLOCAL (ANR-14-CE25-0013), of Archimèdes Labex (ANR-11-LABX-0033), of the A*MIDEX Project (ANR-11-IDEX-0001-02), funded by the “Investissements d’Avenir” French Government program managed by the French National Research Agency (ANR), and of the ERC Project ReaDi - Reaction–Diffusion Equations, Propagation and Modelling, Grant Agreement n. 321186 funded by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Cheng Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bu, ZH., Guo, H. & Wang, ZC. Transition Fronts of Combustion Reaction Diffusion Equations in \(\mathbb {R}^{N}\). J Dyn Diff Equat 31, 1987–2015 (2019). https://doi.org/10.1007/s10884-018-9675-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-018-9675-x

Keywords

  • Reaction–diffusion equations
  • Combustion nonlinearity
  • Transition front
  • Qualitative properties

Mathematics Subject Classification

  • 35K40
  • 35K57
  • 35C07
  • 35B35
  • 35B40