Well-Posedness for Multicomponent Schrödinger–gKdV Systems and Stability of Solitary Waves with Prescribed Mass

  • Santosh Bhattarai
  • Adán J. Corcho
  • Mahendra Panthee
Article
  • 26 Downloads

Abstract

In this paper we prove the well-posedness issues of the associated initial value problem, the existence of nontrivial solutions with prescribed \(L^2\)-norm, and the stability of associated solitary waves for two classes of coupled nonlinear dispersive equations. The first problem here describes the nonlinear interaction between two Schrödinger type short waves and a generalized Korteweg-de Vries type long wave and the second problem describes the nonlinear interaction of two generalized Korteweg-de Vries type long waves with a common Schrödinger type short wave. The results here extend many of the previously obtained results for two-component coupled Schrödinger–Korteweg-de Vries systems.

Keywords

Schrödinger–KdV equations Local and global well-posedness Smoothing effects Bourgain space Normalized solutions Solitary waves Stability Variational methods 

Mathematics Subject Classification

35Q53 35Q55 35B35 35B65 35A15 

Notes

Acknowledgements

The authors are thankful to Professor John Albert and Professor Felipe Linares for their teaching. A. J. Corcho was partially supported by CAPES and CNPq/Edital Universal - 481715/2012-6, Brazil and M. Panthee acknowledges supports from Brazilian agencies: FAPESP 2016/25864-6 and CNPq 305483/2014-5.

References

  1. 1.
    Albert, J., Angulo, J.: Existence and stability of ground-state solutions of a Schrödinger–KdV system. Proc. R. Soc. Edinburgh 133A, 987–1029 (2003)CrossRefMATHGoogle Scholar
  2. 2.
    Albert, J., Bhattarai, S.: Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system. Adv. Differ. Equ. 18, 1129–1164 (2013)MathSciNetMATHGoogle Scholar
  3. 3.
    Angulo, J.: Stability of solitary wave solutions for equations of short and long dispersive waves. Electron. J. Differ. Equ. 72, 1–18 (2006)MathSciNetMATHGoogle Scholar
  4. 4.
    Bartsch, T., Jeanjean, L.: Normalized solutions for nonlinear Schrödinger systems. arXiv:1507.04649
  5. 5.
    Bekiranov, D., Ogawa, T., Ponce, G.: Interaction equations for short and long dispersive waves. J. Funct. Anal. 158, 357–388 (1998)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Benjamin, T.B.: The stability of solitary waves. Proc. R. Soc. Lond. Ser. A 328, 153–183 (1972)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bhattarai, S.: Stability of solitary-wave solutions of coupled NLS equations with power-type nonlinearities. Adv. Nonlinear Anal. 4, 73–90 (2015)MathSciNetMATHGoogle Scholar
  8. 8.
    Bhattarai, S.: Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete Contin. Dyn. Syst. 36(4), 1789–1811 (2016)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. American Mathematical Society, Providence (2003)MATHGoogle Scholar
  10. 10.
    Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982)CrossRefMATHGoogle Scholar
  11. 11.
    Chen, L.: Orbital stability of solitary waves of the nonlinear Schrödinger–KDV equation. J. Partial Differ. Equ. 12, 11–25 (1999)MathSciNetMATHGoogle Scholar
  12. 12.
    Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness for the KdV in Sobolev spaces of negative indices. Electron. J. Differ. Equ. 26, 1–7 (2001)MATHGoogle Scholar
  13. 13.
    Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Sharp global wellposedness for KdV and modified Kdv on \({\mathbb{R}}\) and \({\mathbb{T}}\). J. Am. Math. Soc. 16, 705–749 (2003)CrossRefMATHGoogle Scholar
  14. 14.
    Colorado, E.: On the existence of bound and ground states for some coupled nonlinear Schrödinger–Korteweg-de Vries equations. Adv. Nonlinear Anal. 6, 407–426 (2017)MathSciNetMATHGoogle Scholar
  15. 15.
    Corcho, A.J., Linares, F.: Well-posedness for the Schrödinger–Korteweg-de Vries system. Trans. AMS 359, 4089–4106 (2007)CrossRefMATHGoogle Scholar
  16. 16.
    Deconinck, B., Nguyen, N.V., Segal, B.L.: The interaction of long and short waves in dispersive media. J. Phys. A Math. Gen. 49, 415501 (2016)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Esteves, T.: O problema de Cauchy para a equação KdV super-simétrica com dado inicial pequeno. Master dissertation. Federal University of Piaui, Brazil (2014)Google Scholar
  18. 18.
    Funakoshi, M., Oikawa, M.: The resonant interaction between a long internal gravity wave and a surface gravity wave packet. J. Phys. Soc. Jpn. 52, 1982–1995 (1983)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Garrisi, D.: On the orbital stability of standing-waves pair solutions of a coupled non-linear Klein–Gordon equation. Adv. Nonlinear Stud. 12, 639–658 (2012)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Ginibre, J., Tsutsumi, Y., Velo, G.: On the Cauchy problem for the Zakharov system. J. Funct. Anal. 151, 384–436 (1997)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Guo, B., Miao, C.: Well-posedness of the Cauchy problem for the coupled system of the Schrödinger–KdV equations. Acta Math. Sin. Engl. Ser. 15, 215–224 (1999)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Hojo, H., Ikezi, H., Mima, K., Nishikawa, K.: Coupled nonlinear electron-plasma and ionacoustic waves. Phys. Rev. Lett. 33, 148–151 (1974)CrossRefGoogle Scholar
  23. 23.
    Ikoma, N.: Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions. Adv. Nonlinear Stud. 14, 115–136 (2014)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kakutani, T., Kawahara, T., Sugimoto, N.: Nonlinear interaction between short and long capillary-gravity waves. J. Phys. Soc. Jpn. 39, 1379–1386 (1975)CrossRefGoogle Scholar
  25. 25.
    Kenig, C.E., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg-de Vries quation. J. Am. Math. Soc. 4, 323–347 (1991)CrossRefMATHGoogle Scholar
  26. 26.
    Kenig, C.E., Ponce, G., Vega, L.: A bilinear estimate with applications to the KdV equation. J. Am. Math. Soc. 9(2), 573–603 (1996)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations, 2nd edn. Universitext, Springer, New York (2015)MATHGoogle Scholar
  28. 28.
    Lions, P .L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part 1. Ann. Inst. H. Poincare Anal. Non-linéaire 1, 104–145 (1984)Google Scholar
  29. 29.
    Lieb, E.H., Loss, M.: Analysis, 2nd ed., Graduate studies in mathematics, vol. 14. American Mathematical Society, Providence (2001)Google Scholar
  30. 30.
    Molinet, L., Ribaud, F.: Well-posedness results for the generalized Benjamin–Ono equation with arbitrary large initial data. IMRN Int. Math. Res. Notices 70, 3757–3795 (2004)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis, vol. I. Cambridge University Press, Cambridge (2013)MATHGoogle Scholar
  32. 32.
    Pecher, H.: The Cauchy problem for a Schrödinger–Korteweg-de Vries system with rough data. Differ. Int. Equ. 18, 1147–1174 (2005)MATHGoogle Scholar
  33. 33.
    Satsuma, J., Yajima, N.: Soliton solutions in a diatomic lattice system. Progr. Theor. Phys. 62, 370–378 (1979)CrossRefGoogle Scholar
  34. 34.
    Tsutsumi, M.: Well-posedness of the Cauchy problem for a coupled Schrödinger–KdV equation. Math. Sci. Appl. 2, 513–528 (1993)MATHGoogle Scholar
  35. 35.
    Wu, Y.: The Cauchy problem of the Schrödinger–Korteweg-de Vries system. Differ. Int. Equ. 23, 569–600 (2010)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Santosh Bhattarai
    • 1
  • Adán J. Corcho
    • 2
  • Mahendra Panthee
    • 3
  1. 1.Trocaire CollegeBuffaloUSA
  2. 2.Instituto de Matemática - Universidade Federal do Rio de Janeiro/UFRJRio de JaneiroBrazil
  3. 3.IMECC - UNICAMPCampinasBrazil

Personalised recommendations