Entropy Dissipation Semi-Discretization Schemes for Fokker–Planck Equations

  • Shui-Nee Chow
  • Luca Dieci
  • Wuchen LiEmail author
  • Haomin Zhou


We propose a new semi-discretization scheme to approximate nonlinear Fokker–Planck equations, by exploiting the gradient flow structures with respect to the 2-Wasserstein metric in the space of probability densities. We discretize the underlying state by a finite graph and define a discrete 2-Wasserstein metric in the discrete probability space. Based on such metric, we introduce a gradient flow of the discrete free energy as semi discretization scheme. We prove that the scheme maintains dissipativity of the free energy and converges to a discrete Gibbs measure at exponential dissipation rate. We exhibit these properties on several numerical examples.


Fokker–Planck equation Optimal transport Entropy dissipation Numerics 

Mathematics Subject Classification

65L07 65L12 


  1. 1.
    Ambrosio, L.: Lecture Notes on Optimal Transport Problems. Springer, Berlin (2003)zbMATHGoogle Scholar
  2. 2.
    Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Springer Science and Business Media, Berlin (2006)zbMATHGoogle Scholar
  3. 3.
    Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Benedetto, D., Caglioti, E., Carrillo, J., Pulvirenti, M.: A non-Maxwellian steady distribution for one-dimensional granular media. J. Stat. Phys. 91(5–6), 979–990 (1998)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Buet, C., Cordier, S.: Numerical analysis of conservative and entropy schemes for the Fokker–Planck–Landau equation. SIAM J. Numer. Anal. 36, 953–973 (1999)MathSciNetzbMATHGoogle Scholar
  6. 7.
    Chang, J., Cooper, G.: A practical difference scheme for Fokker–Planck equations. J. Comput. Phys. 6(1), 1–16 (1970)zbMATHGoogle Scholar
  7. 8.
    Che, R., Huang, W., Li, Y., Tetali, P.: Convergence to global equilibrium for Fokker–Planck equations on a graph and Talagrand-type inequalities. J. Differ. Equ. 261, 2552–2583 (2016)MathSciNetzbMATHGoogle Scholar
  8. 9.
    Carrillo, J., Chertock, A., Huang, Y.: A finite-volume method for nonlinear nonlocal equations with a gradient flow structure. Commun. Comput. Phys. 17(01), 233–258 (2015)MathSciNetzbMATHGoogle Scholar
  9. 10.
    Carrillo, J.A., Huang, Y., Patacchini, F.S., Wolansky, G.: Numerical Study of a Particle Method for Gradient Flows. arXiv:1512.03029, (2015)
  10. 11.
    Carrillo, J., McCann, R., Villani, C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Revista Matematica Iberoamericana 19(3), 971–1018 (2003)MathSciNetzbMATHGoogle Scholar
  11. 12.
    Carrillo, J.A., JuEngel, A., Markowich, P.A., Toscani, G., Unterreiter, A.: Entropy dissipation methods for degenerate parabolic problems and generalized sobolev inequalities. Mon. Hefte. Math. 133(1), 1–82 (2001)MathSciNetzbMATHGoogle Scholar
  12. 13.
    Chow, S.N., Huang, W., Li, Y., Zhou, H.: Fokker–Planck equations for a free energy functional or Markov process on a graph. Arch. Ration. Mech. Anal. 203(3), 969–1008 (2012)MathSciNetzbMATHGoogle Scholar
  13. 14.
    Chow, S.N., Li, W., Zhou, H.: Entropy dissipation of Fokker–Planck equations on graphs arXiv:1701.04841, (2017)
  14. 15.
    Dieci, L., Li, W., Zhou, H.: A new model for realistic random perturbations of stochastic oscillators. J. Differ. Equ. 261(4), 2502–2527 (2016)MathSciNetzbMATHGoogle Scholar
  15. 16.
    Erbar, M., Maas, J.: Ricci curvature of finite Markov chains via convexity of the entropy. Arch. Ration. Mech. Anal. 206(3), 997–1038 (2012)MathSciNetzbMATHGoogle Scholar
  16. 17.
    Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)MathSciNetzbMATHGoogle Scholar
  17. 18.
    Li, W.: A study of stochastic differential equations and Fokker–Planck equations with applications. PhD thesis, Georgia tech, (2016)Google Scholar
  18. 19.
    Maas, J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261(8), 2250–2292 (2011)MathSciNetzbMATHGoogle Scholar
  19. 20.
    Markowich, P.A., Villani, C.: On the trend to equilibrium for the Fokker–Planck equation: an interplay between physics and functional analysis. Mat. Contemp 19, 1–29 (2000)MathSciNetzbMATHGoogle Scholar
  20. 21.
    Mielke, A.: A gradient structure for reaction-diffusion systems and for energy-drift-diffusion. Nonlinearity 24(4), 13–29 (2011)MathSciNetzbMATHGoogle Scholar
  21. 22.
    Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)MathSciNetzbMATHGoogle Scholar
  22. 23.
    Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)MathSciNetzbMATHGoogle Scholar
  23. 24.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)MathSciNetzbMATHGoogle Scholar
  24. 25.
    Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Handbook of Mathematical Fluid Dynamics, vol. 1, pp. 71–305 (2002)Google Scholar
  25. 26.
    Villani, C.: Topics in optimal transportation. Number 58. American Mathematical Soc., (2003)Google Scholar
  26. 27.
    Villani, C.: Optimal Transport: Old and New, vol. 338. Springer Science and Business Media, Berlin (2008)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations