Skip to main content
Log in

Periodic Solutions to Nonlinear Wave Equation with X-Dependent Coefficients Under the General Boundary Conditions

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we consider a class of nonlinear wave equations with x-dependent coefficients and prove existence of families of time-periodic solutions under the general boundary conditions. Such a model arises from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. The proof is based on a Lyapunov–Schmidt reduction together with a differentiable Nash–Moser iteration scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahri, A., Brézis, H.: Periodic solution of a nonlinear wave equation. Proc. Roy. Soc. Edinb. Sect. A 85(3–4), 313–320 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baldi, P., Berti, M.: Forced vibrations of a nonhomogeneous string. SIAM J. Math. Anal. 40(1), 382–412 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bamberger, A., Chavent, G., Lailly, P.: About the stability of the inverse problem in 1-d wave equations-applications to the interpretation of seismic profiles. Appl. Math. Optim. 5(1), 1–47 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbu, V., Pavel, N.H.: Periodic solutions to one-dimensional wave equation with piece-wise constant coefficients. J. Differ. Equ. 132(2), 319–337 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barbu, V., Pavel, N.H.: Determining the acoustic impedance in the 1-d wave equation via an optimal control problem. SIAM J. Control Optim 35(5), 2035–2048 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barbu, V., Pavel, N.H.: Periodic solutions to nonlinear one-dimensional wave equation with \(x\)-dependent coefficients. Trans. Am. Math. Soc. 349(5), 2035–2048 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berti, M., Bolle, P.: Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Math. J. 134(2), 359–419 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berti, M., Bolle, P.: Cantor families of periodic solutions of wave equations with \({C}^k\) nonlinearities. NoDEA Nonlinear Differ. Equ. Appl. 15(1–2), 247–276 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Berti, M., Bolle, P.: Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions. Arch. Ration. Mech. Anal. 195(2), 609–642 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Berti, M., Bolle, P.: Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity 25(9), 2579–2613 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berti, M., Corsi, L., Procesi, M.: An abstract Nash–Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds. Comm. Math. Phys. 334(3), 1413–1454 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Internat. Math. Res. Notices, (11):475ff., approx. 21 pp. (electronic) (1994)

  13. Bourgain, J.: Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom. Funct. Anal. 5(4), 629–639 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brézis, H.: Periodic solutions of nonlinear vibrating strings and duality principles. Bull. Amer. Math. Soc. (N.S.) 8(3), 409–426 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brézis, H., Coron, J.-M.: Periodic solutions of nonlinear wave equations and Hamiltonian systems. Am. J. Math. 103(3), 559–570 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brézis, H., Nirenberg, L.: Forced vibrations for a nonlinear wave equation. Commun. Pure Appl. Math. 31(1), 1–30 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chierchia, L., You, J.: KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Commun. Math. Phys. 211(2), 497–525 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  19. Craig, W., Wayne, C.E.: Newton’s method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46(11), 1409–1498 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Delort, J.-M.: Periodic solutions of nonlinear Schrödinger equations: a paradifferential approach. Anal. PDE 4(5), 639–676 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fečkan, M.: Periodic solutions of certain abstract wave equations. Proc. Am. Math. Soc. 123(2), 465–470 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gao, Y., Li, Y., Zhang, J.: Invariant tori of nonlinear Schrödinger equation. J. Differ. Equ. 246(8), 3296–3331 (2009)

    Article  MATH  Google Scholar 

  23. Geng, J., You, J.: A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Commun. Math. Phys. 262(2), 343–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Geng, J., Zhao, Z.: Quasi-periodic solutions for one-dimensional nonlinear lattice Schrödinger equation with tangent potential. SIAM J. Math. Anal. 45(6), 3651–3689 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ji, S.: Time periodic solutions to a nonlinear wave equation with \(x\)-dependent coefficients. Calc. Var. Partial Differ. Equ. 32(2), 137–153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ji, S.: Time-periodic solutions to a nonlinear wave equation with periodic or anti-periodic boundary conditions. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465(2103), 895–913 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ji, S., Li, Y.: Periodic solutions to one-dimensional wave equation with \(x\)-dependent coefficients. J. Differ. Equ. 229(2), 466–493 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ji, S., Li, Y.: Time-periodic solutions to the one-dimensional wave equation with periodic or anti-periodic boundary conditions. Proc. Roy. Soc. Edinb. Sect. A 137(2), 349–371 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ji, S., Li, Y.: Time periodic solutions to the one-dimensional nonlinear wave equation. Arch. Ration. Mech. Anal. 199(2), 435–451 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin (1995). Reprint of the 1980 edition

  31. Kuksin, S.B.: Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional. Anal. i Prilozhen 21(3), 22–37, 95 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, J., Yuan, X.: Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient. Commun. Pure Appl. Math. 63(9), 1145–1172 (2010)

    MathSciNet  MATH  Google Scholar 

  33. McKenna, P.J.: On solutions of a nonlinear wave question when the ratio of the period to the length of the interval is irrational. Proc. Am. Math. Soc. 93(1), 59–64 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rabinowitz, P.H.: Periodic solutions of nonlinear hyperbolic partial differential equations. Commun. Pure Appl. Math. 20, 145–205 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rabinowitz, P.H.: Periodic solutions of nonlinear hyperbolic partial differential equations. II. Commun. Pure Appl. Math. 22, 15–39 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rabinowitz, P.H.: Time periodic solutions of nonlinear wave equations. Manuscr. Math. 5, 165–194 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rabinowitz, P.H.: Free vibrations for a semilinear wave equation. Commun. Pure Appl. Math. 31(1), 31–68 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wayne, C.E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127(3), 479–528 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yuan, X.: Quasi-periodic solutions of completely resonant nonlinear wave equations. J. Differ. Equ. 230(1), 213–274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li.

Additional information

The research of YL was supported in part by NSFC Grants 11571065, 11171132 and National Research Program of China Grant 2013CB834100.

Appendix

Appendix

1.1 Proof of Remark 2.2

(i) Decomposing uv as

$$\begin{aligned} uv=\sum _{l\in \mathbf {Z}}\left( \sum _{k\in \mathbf {Z}}u_{l-k}v_{k}\right) e^{\mathrm {i}lt},\quad \forall u,v\in H^s \end{aligned}$$

and using the Cauchy inequality may yields

$$\begin{aligned} \Vert uv\Vert ^2_{s}&=\sum \limits _{l}(1+l^{2s})\Vert \sum \limits _{k}u_{l-k}v_{k}\Vert ^2_{H^1}\le \sum \limits _{l}\left( \sum \limits _{k}(1+l^{2s})^{\frac{1}{2}} c_{lk}\Vert u_{l-k}v_{k}\Vert _{H^1}\frac{1}{c_{lk}}\right) ^2\\&{\le }\sum \limits _{l}\left( \sum \limits _{k}\frac{1}{c^2_{lk}}\right) \left( \sum \limits _{k}\Vert u_{l-k}\Vert ^2_{H^1}(1+|l-k|^{2s})\Vert v_{k}\Vert ^2_{H^1}(1+k^{2s})\right) , \end{aligned}$$

where

$$\begin{aligned} c_{lk}:=\sqrt{\frac{(1+k^{2s})(1+|l-k|^{2s})}{1+l^{2s}}}. \end{aligned}$$

A simple process yields

$$\begin{aligned} 1+l^{2s}&\le 1+(|k|+|l-k|)^{2s}\le 1+2^{2s-1}(k^{2s}+|l-k|^{2s})\\&<2^{2s-1}(1+k^{2s}+1+|l-k|^{2s}), \end{aligned}$$

which leads to

$$\begin{aligned} \sum \limits _{k\in \mathbf {Z}}\frac{1}{c^2_{lk}}<2^{2s-1}\left( \sum \limits _{k\in \mathbf {Z}}\frac{1}{1+k^{2s}}+ \sum \limits _{k\in \mathbf {Z}}\frac{1}{1+|l-k|^{2s}}\right) =2^{2s}\sum \limits _{k\in \mathbf {Z}}\frac{1}{1+k^{2s}}{\mathop {=:}\limits ^{s>1/2}}C(s)^2. \end{aligned}$$

Hence \(\Vert uv\Vert _{s}\) may be bounded from above by \(C(s)\Vert u\Vert _s\Vert v\Vert _s\).

(ii) It follows from the Cauchy inequality that

$$\begin{aligned} \sum \limits _{l\in \mathbf {Z}}\Vert u_l\Vert _{L^{\infty }}\le \mathrm {c}\sum \limits _{l\in \mathbf {Z}}\Vert u_l\Vert _{H^1}\le \mathrm {c}\left( \sum \limits _{l\in \mathbf {Z}}\Vert u_l\Vert _{H^1}(1+l^{2s})\right) ^{\frac{1}{2}}\left( \sum \limits _{l\in \mathbf {Z}}\frac{1}{1+l^{2s}}\right) ^{\frac{1}{2}}\le C(s)\Vert u\Vert _{s}. \end{aligned}$$

1.2 Preliminaries

By the definitions of \(H^{s}\), for completeness, we list Lemmas 5.15.3 and the proof can be found in [8].

Lemma 5.1

(Moser–Nirenberg) For all \(u_1,u_2\in H^{s'}\cap H^s\) with \(s'\ge 0\) and \(s>\frac{1}{2}\), we have

$$\begin{aligned} \Vert u_1u_2\Vert _{{s'}}&\le C(s')\left( \Vert u_1\Vert _{L^{\infty }(\mathbf {T},H^1(0,\pi ))}\Vert u_2\Vert _{{s'}}+\Vert u_1\Vert _{{s'}}\Vert u_2\Vert _{L^{\infty }(\mathbf {T},H^1(0,\pi ))}\right) \end{aligned}$$
(5.1)
$$\begin{aligned}&\le C(s')\left( \Vert u_1\Vert _{s}\Vert u_2\Vert _{{s'}}+\Vert u_1\Vert _{{s'}}\Vert u_2\Vert _{s}\right) . \end{aligned}$$
(5.2)

Lemma 5.2

(Logarithmic convexity) Let \(0\le \mathfrak {a}'\le \mathfrak {a}\le \mathfrak {b}\le \mathfrak {b}'\) satisfy \(\mathfrak {a}+\mathfrak {b}=\mathfrak {a}'+\mathfrak {b}'\). Taking \(\mathfrak {p}:=\frac{\mathfrak {b}'-\mathfrak {a}}{\mathfrak {b}'-\mathfrak {a}'}\), one has

$$\begin{aligned} \Vert u_1\Vert _{\mathfrak {a}}\Vert u_2\Vert _{\mathfrak {b}}\le \mathfrak {p}\Vert u_1\Vert _{\mathfrak {a}'}\Vert u_2\Vert _{\mathfrak {b}'} +(1-\mathfrak {p})\Vert u_2\Vert _{\mathfrak {a}'}\Vert u_1\Vert _{\mathfrak {b}'},\quad \forall u_1,u_2\in \mathcal {H}^{\mathfrak {b}'}. \end{aligned}$$

In particular

$$\begin{aligned} \Vert u\Vert _{\mathfrak {a}}\Vert u\Vert _{\mathfrak {b}}\le \Vert u\Vert _{\mathfrak {a}'}\Vert u\Vert _{\mathfrak {b}'}, \quad \forall u\in \mathcal {H}^{\mathfrak {b}'}. \end{aligned}$$
(5.3)

Let \(\mathscr {C}_k\) denote the following space composed by the space-independent functions:

$$\begin{aligned} \mathscr {C}_k:=\left\{ f\in C([0,\pi ]\times \mathbf {R};\mathbf {R}):~u\mapsto f(\cdot ,u)~{\mathrm {belongs}}~{\mathrm { to}}~C^{k}(\mathbf {R};H^{1}(0,\pi ))\right\} . \end{aligned}$$

Lemma 5.3

Let \(f\in \mathscr {C}_1\), \(\mathfrak {C}:=\Vert u\Vert _{L^{\infty }(0,\pi )}\). Then the composition operator \(u(x)\mapsto f(x,u(x))\) belongs to \(C(H^1(0,\pi );H^1(0,\pi ))\) with

$$\begin{aligned} \Vert f(x,u(x))\Vert _{H^1}\le C\Big (\max _{u\in [-\mathfrak {C},\mathfrak {C}]}\Vert f(\cdot ,u)\Vert _{H^1}+\max _{u\in [-\mathfrak {C},\mathfrak {C}]}\Vert \partial _uf(\cdot ,u)\Vert _{H^1}\Vert u\Vert _{H^1}\Big ). \end{aligned}$$

In particular one has

$$\begin{aligned} \Vert f(x,0)\Vert _{H^1}\le C. \end{aligned}$$

With the help of Lemmas 5.15.3, the following lemma can be obtained.

Lemma 5.4

Let \(f\in \mathcal {C}_{k}\) with \(k\ge 1\). Then, for all \(s>\frac{1}{2},0\le s'\le k-1\), the composition operator \(u(t,x)\mapsto f(t,x,u(t,x))\) is in \(C(H^{s}\cap {H}^{s'};{H}^{s'})\) with

$$\begin{aligned} \Vert f(t,x,u)\Vert _{{s'}}\le C(s',\Vert u\Vert _{s})(1+\Vert u\Vert _{{s'}}). \end{aligned}$$
(5.4)

Proof

If \(s'=\mathrm {p}\) is an integer, for all \(\mathrm {p}\in \mathbf {N}\) with \(\mathrm {p}\le k-1\), \(u\in H^{s}\cap H^{\mathrm {p}}\), we have to prove

$$\begin{aligned} \Vert f(t,x,u)\Vert _{\mathrm {p}}\le C(\mathrm {p},\Vert u\Vert _{s})(1+\Vert u\Vert _{\mathrm {p}}) \end{aligned}$$
(5.5)

and that

$$\begin{aligned} f(t,x,u_n)\rightarrow f(t,x,u) \quad \text {as } u_n\rightarrow u ~\text {in}~ {H}^{s}\cap {H}^{\mathrm {p}}. \end{aligned}$$
(5.6)

Let us verify (5.5)–(5.6) by a recursive argument. For all \(g\in \mathscr {C}_1\), it is clear that

$$\begin{aligned} \Vert g(x,u(x))\Vert _{H^1}{\mathop {\le }\limits ^{\text {Lemma }5.3 }} C'(1+\Vert u\Vert _{H^1}). \end{aligned}$$
(5.7)

Firstly, for \(\mathrm {p}=0\), using (5.7) and Remark 2.2\(\mathrm {(ii)}\) yields

$$\begin{aligned} \Vert f(t,x,u)\Vert _{0}&\le C\max _{t\in \mathbf {T}}\Vert f(t,\cdot ,u(t,\cdot ))\Vert _{H^1(0,\pi )}{\le }C'(1+\max _{t\in \mathbf {T}}\Vert u(t,\cdot )\Vert _{H^1(0,\pi )})\nonumber \\&\le C''(1+\Vert u\Vert _{s})=:C(\Vert u\Vert _{s}). \end{aligned}$$
(5.8)

If \(k\ge 2\), then a similar argument as above can yield

$$\begin{aligned} \Vert \partial _{t}f(t,x,u)\Vert _{0}\le C(\Vert u\Vert _{s}),\quad \max _{t\in \mathbf {T}}\Vert \partial _{u}f(t,\cdot ,u(t,\cdot ))\Vert _{H^1(0,\pi )}\le C(\Vert u\Vert _{s}). \end{aligned}$$
(5.9)

Moreover Remark 2.2\(\mathrm {(ii)}\) leads to

$$\begin{aligned} \max _{t\in \mathbf {T}}\Vert u_{n}(t,\cdot )-u(t,\cdot )\Vert _{H^1(0,\pi )}\rightarrow 0 \quad \text{ as } u_n\rightarrow u \text{ in } H^{s}\cap H^{0}. \end{aligned}$$

Then it follows from the continuity property in Lemma 5.3 and the compactness of \(\mathbf {T}\) that

$$\begin{aligned} \Vert f(t,x,u_{n})-f(t,x,u)\Vert _{0}\le C\max _{t\in \mathbf {T}}\Vert f(t,\cdot ,u_{n}(t,\cdot ))-f(t,\cdot ,u(t,\cdot ))\Vert _{H^1(0,\pi )}\rightarrow 0 \end{aligned}$$

as \( u_n\rightarrow u\) in \( H^{s}\cap H^{0}\).

Assume that (5.5) holds for \(\mathrm {p}=\mathfrak {k}\) with \(\mathfrak {k}\in \mathbf N^+\), then we have to verify that it holds for \(\mathrm {p}=\mathfrak {k}+1\) with \(\mathfrak {k}+1 \le k-1\).

Since \(\partial _{t}f,\partial _{u}f\in \mathcal {C}_{k-1}\), by the above assumption for \(\mathrm {p}=\mathfrak {k}\), we get that for \(u\in H^s\cap H^{\mathfrak {k}+1}\),

$$\begin{aligned} \Vert \partial _{t}f(t,x,u)\Vert _{\mathfrak {k}}\le C(\mathfrak {k},\Vert u\Vert _{s})(1+\Vert u\Vert _{\mathfrak {k}}),\quad \Vert \partial _{u}f(t,x,u)\Vert _{\mathfrak {k}}\le C(\mathfrak {k},\Vert u\Vert _{s})(1+\Vert u\Vert _{\mathfrak {k}}). \end{aligned}$$
(5.10)

Let \(\mathfrak {q}(t,x):=f(t,x,u(t,x))\). We write \(\mathfrak {q}\) as the form

$$\begin{aligned} \mathfrak {q}(t,x)=\sum _{j\in \mathbf {Z}}\mathfrak {q}_{j}(x)e^{\mathrm{i}jt}. \end{aligned}$$

It is obvious that \(\mathfrak {q}_{t}(t,x)=\sum _{j\in \mathbf {Z}}\mathrm{i}j\mathfrak {q}_{j}(x)e^{\mathrm{i}jt}\). By the definition of s-norm, we obtain

$$\begin{aligned} \Vert \mathfrak {q}(t,x)\Vert ^2_{{\mathfrak {k}+1}}&=\sum \limits _{j\in \mathbf {Z}}\left( 1+j^{2(\mathfrak {k}+1)}\right) \Vert \mathfrak {q}_{j}\Vert ^2_{H^1}= \sum _{j\in \mathbf {Z}}\Vert \mathfrak {q}_{j}\Vert ^2_{H^1}+\sum _{j\in \mathbf {Z}}j^{2\mathfrak {k}}\Vert \mathrm{i}j\mathfrak {q}_j\Vert ^2_{H^1}\\&\le \Vert \mathfrak {q}(t,x)\Vert ^2_{0}+\Vert \mathfrak {q}_{t}(t,x)\Vert ^2_{\mathfrak {k}} \le \left( \Vert \mathfrak {q}(t,x)\Vert _{0}+\Vert \mathfrak {q}_{t}(t,x)\Vert _{\mathfrak {k}}\right) ^2. \end{aligned}$$

As a consequence

$$\begin{aligned} \Vert f(t,x,u)\Vert _{{\mathfrak {k}+1}}\le \Vert f(t,x,u)\Vert _{0}+\Vert \partial _{t}f(t,x,u)\Vert _{\mathfrak {k}}+\Vert \partial _{u}f(t,x,u)\partial _{t}u\Vert _{\mathfrak {k}}. \end{aligned}$$
(5.11)

For \(\mathfrak {k}=0\) (\(\mathrm {p}=1\)), formulae (5.8)–(5.9) and (5.11) carry out

$$\begin{aligned} \Vert f(t,x,u)\Vert _{1}&\le \Vert f(t,x,u)\Vert _{0}+\Vert \partial _{t}f(t,x,u)\Vert _{0}+C\max _{t\in \mathbf {T}}\Vert \partial _{u}f(t,\cdot ,u(t,\cdot ))\Vert _{H^1(0,\pi )}\Vert \partial _xu\Vert _{0}\\&\le ~2C(\Vert u\Vert _{s})+C'(\Vert u\Vert _{s})\Vert u\Vert _{1}\le C(1,\Vert u\Vert _{s})(1+\Vert u\Vert _{1}), \end{aligned}$$

where \(C(1,\Vert u\Vert _{s}):=\max \{2C(\Vert u\Vert _{s}),C'(\Vert u\Vert _{s})\}\). Letting \(s_{1}\in (1/2,\min (1,s))\), it is straightforward that

$$\begin{aligned} {\left\{ \begin{array}{ll} s_1<\mathfrak {k}<s_1+1<\mathfrak {k+1},\quad \mathfrak {k}=1,\\ s_1<s_1+1<\mathfrak {k}<\mathfrak {k}+1,\quad \forall \mathfrak {k}\ge 2. \end{array}\right. } \end{aligned}$$

Then using (5.3) gives rise to

$$\begin{aligned} \Vert u\Vert _{\mathfrak {k}}\Vert u\Vert _{{s_1+1}}{\le }\Vert u\Vert _{{\mathfrak {k}+1}}\Vert u\Vert _{{s_1}}\le \Vert u\Vert _{{\mathfrak {k}+1}}\Vert u\Vert _{s}. \end{aligned}$$
(5.12)

Thus, by combining (5.1), (5.10)–(5.12), Remark 2.2\(\mathrm {(ii)}\) with the above assumption for \(\mathrm {p}=\mathfrak {k}\), we get

$$\begin{aligned} \Vert f(t,x,u)\Vert _{{\mathfrak {k}+1}}&\le C(\Vert u\Vert _{s})+C(\mathfrak {k},\Vert u\Vert _{s})(1+\Vert u\Vert _{\mathfrak {k}})\\&\quad +C(\mathfrak {k})\Vert \partial _{u}f(t,x,u)\Vert _{\mathfrak {k}}\Vert \partial _{t}u\Vert _{L^{\infty }(\mathbf {T},H^1(0,\pi ))}\\&\quad +C(\mathfrak {k}) \Vert \partial _{u}f(t,x,u)\Vert _{L^{\infty }(\mathbf {T},H^1(0,\pi ))}\Vert u\Vert _{{\mathfrak {k}+1}}\\&\le C(\Vert u\Vert _{s})+C(\mathfrak {k},\Vert u\Vert _{s})(1+\Vert u\Vert _{\mathfrak {k}})+C(\mathfrak {k})C(\mathfrak {k},\Vert u\Vert _{s})(1+\Vert u\Vert _{\mathfrak {k}})\Vert u\Vert _{{s_1+1}}\\&\quad +\,C(\mathfrak {k})C(\Vert u\Vert _{s})\Vert u\Vert _{{\mathfrak {k}+1}}\\&\le C(\mathfrak {k}+1,\Vert u\Vert _{s})(1+\Vert u\Vert _{{\mathfrak {k}+1}}), \end{aligned}$$

where \(C(\mathfrak {k}+1,\Vert u\Vert _{s})=4\max \{C(\Vert u\Vert _{s}),C(\mathfrak {k},\Vert u\Vert _{s}),C(\mathfrak {k})C(\mathfrak {k},\Vert u\Vert _{s})(1+\Vert u\Vert _{s}),C(\mathfrak {k})C(\Vert u\Vert _{s})\} .\) This implies that (5.5) is satisfied for \(\mathrm {p}=\mathfrak {k}+1\).

Finally, we assume that (5.6) holds for \(\mathrm {p}=\mathfrak {k}\). Using inequality (5.11) yields that the continuity property of f with respect to u also holds for \(\mathrm {p}=\mathfrak {k}+1\) with \(\mathfrak {k}+1\le k-1\).

When \(s'\) is not an integer, we can obtain the result by the Fourier dyadic decomposition. The argument is similar to the proof of the Lemma A.1 in [20]. \(\square \)

Lemma 5.5

Letting \(f\in \mathcal {C}_{k}\) with \(k\ge 3\), for all \(0\le s'\le k-3\), a map F is defined as

$$\begin{aligned} F:\quad H^{s}\cap H^{s'}&\rightarrow {H}^{s'},u\mapsto f(t,x,u). \end{aligned}$$

Then F is a \(C^2\) map with respect to u and

$$\begin{aligned} {\mathrm{D}}_{u}F(u)[h]=\partial _{u}f(t,x,u)h, \quad \mathrm{D}^2_{u}G(u)[h,h]=\partial ^2_{u}f(t,x,u)h^2,\quad \forall h\in H^s\cap H^{s'}. \end{aligned}$$

Moreover one has

$$\begin{aligned}&\Vert \partial _{u}f(t,x,u)\Vert _{{s'}}\le C(s',\Vert u\Vert _{s})(1+\Vert u\Vert _{{s'}}),\quad \Vert \partial ^2_{u}f(t,x,u)\Vert _{{s'}}\le C(s',\Vert u\Vert _{s})(1+\Vert u\Vert _{{s'}}). \end{aligned}$$
(5.13)

Proof

It is straightforward that \(\partial _{u}f,\partial ^2_{u}f\) are in \(\mathcal {C}_{k-1},\mathcal {C}_{k-2}\). Hence it follows from Lemma 5.4 that the maps \(u\mapsto \partial _{u}f(t,x,u)\), \(u\mapsto \partial ^2_{u}f(t,x,u)\) are continuous and that (5.13) holds. Let us check that F is \(C^2\) respect to u. Using the continuity property of \(u\mapsto \partial _{u}f(t,x,u)\), we deduce

$$\begin{aligned}&\Vert f(t,x,u+h)-f(t,x,u)-\partial _{u}f(t,x,u)h\Vert _{{s'}}\\&\quad =\Vert h\int _0^1(\partial _{u}f(t,x,u+\mathfrak {v} h) -\partial _{u}f(t,x,u))\mathrm {d}\mathfrak {v}\Vert _{{s'}}\\&\quad \le C(s')\Vert h\Vert _{{\max {\{s,s'\}}}}\max _{\mathfrak {v}\in [0,1]}\Vert \partial _{u}f(t,x,u+\mathfrak {v} h)-\partial _{u}f(t,x,u)\Vert _{{\max {\{s,s'\}}}}\\&\quad =o(\Vert h\Vert _{{\max {\{s,s'\}}}}), \end{aligned}$$

which carries out

$$\begin{aligned} \mathrm{D}_{u}F(u)[h]=\partial _{u}f(t,x,u)h,\quad \forall h\in H^s\cap H^{s'} \end{aligned}$$

and that \(u\mapsto \mathrm{D}_uF(u)\) is continuous. In addition

$$\begin{aligned}&\partial _{u}f(t,x,u+\sigma h)h-\partial _{u}f(t,x,u)h-\partial ^2_{u}f(t,x,u)h^2\\&\quad =h^2\int _0^1(\partial ^2_{u}f(t,x,u+\mathfrak {v} h)-\partial ^2_{u}f(t,x,u))~\mathrm {d}\mathfrak {v}. \end{aligned}$$

The same discussion as above yields that F is twice differentiable with respect to u and that \(u\mapsto \mathrm{D}^2_uF(u)\) is continuous. \(\square \)

1.3 Proof of Lemma 4.14

Proof

By (3.10), let \(\vartheta _i(\xi )=c^2 \frac{d_i(\psi )}{\rho (\psi )}(\xi ),i=1,2\). Define

$$\begin{aligned} T_1 u:=\frac{\mathrm {d}^{2}}{\mathrm {d}{\xi ^2}}u+\vartheta _1(\xi )u, \quad T_2 u:=\frac{\mathrm {d}^{2}}{\mathrm {d}{\xi ^2}}u+\vartheta _2(\xi )u. \end{aligned}$$

It follows from (3.2), Lemma 5.3, \(m\in H^1\) and \(\rho \in H^3\) that

$$\begin{aligned} \Vert \vartheta _iu\Vert _{L^2}\le \Vert \vartheta _i\Vert _{L^{\infty }}\Vert u\Vert _{L^2}=\left\| c^2{d_i(\psi )}/{\rho (\psi )}\right\| _{{H}^1(0,\pi )}\Vert u\Vert _{L^2}\le \tilde{\mathfrak {C}}\Vert u\Vert _{L^2}. \end{aligned}$$

This indicates that \(\vartheta _i\in \mathcal {B}(L^2,L^2)\). It is obvious that \(T_1,T_2\) are self-adjoint using Theorem 4.13. By means of Theorem 4.13, Lemma 5.5 and the inverse Liouville substitution of (3.3), for all \((\epsilon ,w)\in (\epsilon _1,\epsilon _2)\times \{W\cap H^s:\Vert w\Vert _{s}< r\}\), we derive

$$\begin{aligned} |\lambda _j(d_2)-\lambda _j(d_1)|&\le \frac{1}{c^2}|\mu _{j}(\vartheta _2)-\mu _j(\vartheta _1)| \le \frac{1}{c^2}\Vert \vartheta _2-\vartheta _1\Vert _{\mathcal {B}(L^2,L^2)} \le \frac{1}{c^2}\Vert \vartheta _2-\vartheta _1\Vert _{L^{\infty }}\\&\le \kappa _0\Vert d_2-d_1\Vert _{{H}^1(0,\pi )}\\&\le \kappa (|\epsilon -\epsilon '|+\Vert w-w'\Vert _s). \end{aligned}$$

\(\square \)

1.4 Proof of Formula (4.76)

Proof

If \(j>\max {\{\hat{N},{4 c\mathfrak {M}}\}}\), \(\forall \epsilon \in (\epsilon _1,\epsilon _2)\) ,\(\forall \Vert w\Vert _s< r\), then formula (4.23) shows that either

$$\begin{aligned} \inf \left| \sqrt{\lambda _{j+1}(\epsilon ,w)}-\sqrt{\lambda _j(\epsilon ,w)}\right|&\ge \frac{1}{c}-\left| \sqrt{\lambda _{j+1}(\epsilon ,w})-\frac{j+1}{c}\right| -\left| \sqrt{\lambda _{j}(\epsilon ,w)}-\frac{j}{c}\right| \\&\ge \frac{1}{c}-\frac{2\mathfrak {M}}{j}>\frac{1}{2c} \end{aligned}$$

or

$$\begin{aligned} \inf \left| \sqrt{\lambda _{j+1}(\epsilon ,w)}-\sqrt{\lambda _j(\epsilon ,w)}\right|&\ge \frac{1}{c}-\left| \sqrt{\lambda _{j+1}(\epsilon ,w)}-\frac{j+1+1/2}{c}\right| \\&\quad -\,\left| \sqrt{\lambda _{j}(\epsilon ,w)}-\frac{j+1/2}{c}\right| \\&>\frac{1}{2c} \end{aligned}$$

holds. For \(0\le j\le \max {\{\hat{N},{4c\mathfrak {M}}\}}\), we may obtain

$$\begin{aligned} \mathfrak {w}_j:=\inf _{{\mathop {w\in \{W\cap H^s:\Vert w\Vert _{s}< r\}}\limits ^{\epsilon \in (\epsilon _1,\epsilon _2)}}}\left| \sqrt{\lambda _{j+1}(\epsilon ,w)}-\sqrt{\lambda _j(\epsilon ,w)}\right| . \end{aligned}$$

Note that \(\hat{N}\) is seen in Lemma 3.8. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Li, Y. & Yang, X. Periodic Solutions to Nonlinear Wave Equation with X-Dependent Coefficients Under the General Boundary Conditions. J Dyn Diff Equat 31, 321–368 (2019). https://doi.org/10.1007/s10884-018-9658-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-018-9658-y

Keywords

Navigation