Skip to main content

On the Existence of Solutions for Stationary Mean-Field Games with Congestion

Abstract

Mean-field games (MFGs) are models of large populations of rational agents who seek to optimize an objective function that takes into account their location and the distribution of the remaining agents. Here, we consider stationary MFGs with congestion and prove the existence of stationary solutions. Because moving in congested areas is difficult, agents prefer to move in non-congested areas. As a consequence, the model becomes singular near the zero density. The existence of stationary solutions was previously obtained for MFGs with quadratic Hamiltonians thanks to a very particular identity. Here, we develop robust estimates that give the existence of a solution for general subquadratic Hamiltonians.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Achdou, Y., Laurière, M.: Mean field type control with congestion. Appl. Math. Optim. 73, 393–418 (2016)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Achdou, Y., Porretta, A.: Mean field games with congestion. Preprint (2016)

  3. 3.

    Cardaliaguet, P., Garber, P., Porretta, A., Tonon, D.: Second order mean field games with degenerate diffusion and local coupling. Preprint (2014)

  4. 4.

    Cirant, M.: Multi-population mean field games systems with Neumann boundary conditions. J. Math. Pures Appl. 103(5), 1294–1315 (2015). doi:10.1016/j.matpur.2014.10.013

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Evangelista, D., Gomes, D., Nurbekyan, L.: Radially symmetric mean-field-games with congestion. ArXiv preprint (2017). arXiv:1703.07594v1 [math.AP]

  6. 6.

    Ferreira, R., Gomes, D.: Existence of weak solutions for stationary mean-field games through variational inequalities. Preprint (2016)

  7. 7.

    Gomes, D., Mitake, H.: Existence for stationary mean-field games with congestion and quadratic Hamiltonians. NoDEA Nonlinear Differ. Equ. Appl. 22(6), 1897–1910 (2015)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Gomes, D., Nurbekyan, L., Prazeres, M.: Explicit solutions of one-dimensional, first-order, stationary mean-field games with congestion. In: 2016 IEEE 55th Conference on Decision and Control, CDC 2016, pp. 4534–4539 (2016)

  9. 9.

    Gomes, D., Nurbekyan, L., Prazeres, M.: One-dimensional stationary mean-field games with local coupling. Dyn. Games Appl. (2017). doi:10.1007/s13235-017-0223-9

    MathSciNet  Article  Google Scholar 

  10. 10.

    Gomes, D., Patrizi, S., Voskanyan, V.: On the existence of classical solutions for stationary extended mean field games. Nonlinear Anal. 99, 49–79 (2014)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Gomes, D., Pimentel, E.: Time dependent mean-field games with logarithmic nonlinearities. SIAM J. Math. Anal. 47(5), 3798–3812 (2015)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Gomes, D., Pimentel, E.: Local regularity for mean-field games in the whole space. Minimax Theory Appl. 01(1), 065–082 (2016)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Gomes, D., Pimentel, E., Sánchez-Morgado, H.: Time-dependent mean-field games in the subquadratic case. Commun. Partial Differ. Equ. 40(1), 40–76 (2015)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Gomes, D., Pires, G.E., Sánchez-Morgado, H.: A-priori estimates for stationary mean-field games. Netw. Heterog. Media 7(2), 303–314 (2012)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Gomes, D., Voskanyan, V.: Short-time existence of solutions for mean-field games with congestion. J. Lond. Math. Soc. (2) 92(3), 778–799 (2015)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Gomes, D., Pimentel, E., Sánchez-Morgado, H.: Time-dependent mean-field games in the superquadratic case. ESAIM Control Optim. Calc. Var. 22(2), 562–580 (2016)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Graber, J.: Weak solutions for mean field games with congestion. Preprint (2015)

  18. 18.

    Guéant, O.: An existence and uniqueness result for mean field games with congestion effect on graphs. Preprint (2011)

  19. 19.

    Huang, M., Caines, P.E., Malhamé, R.P.: Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized \(\epsilon \)-Nash equilibria. IEEE Trans. Autom. Control 52(9), 1560–1571 (2007)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–251 (2006)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–625 (2006)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684 (2006)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Lions, P.-L.: Collége de France course on mean-field games (2007–2011). https://www.college-de-france.fr/site/pierre-louis-lions/_course.htm

  25. 25.

    Nurbekyan, L.: One-dimensional, non-local, first-order, stationary mean-field games with congestion: a Fourier approach. ArXiv preprint (2017). arXiv:1703.03954v1 [math.AP]

  26. 26.

    Pimentel, E., Voskanyan, V.: Regularity for second-order stationary mean-field games. Indiana Univ. Math. J. 66(1), 1–22 (2017)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Porretta, A.: On the planning problem for the mean field games system. Dyn. Games Appl. 4(2), 231–256 (2014)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Porretta, A.: Weak solutions to Fokker–Planck equations and mean field games. Arch. Ration. Mech. Anal. 216(1), 1–62 (2015)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Diogo A. Gomes.

Additional information

D. Gomes and D. Evangelista were partially supported baseline and start-up funds from King Abdullah University of Science and Technology (KAUST).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Evangelista, D., Gomes, D.A. On the Existence of Solutions for Stationary Mean-Field Games with Congestion. J Dyn Diff Equat 30, 1365–1388 (2018). https://doi.org/10.1007/s10884-017-9615-1

Download citation

Keywords

  • Mean-field games
  • Congestion problems
  • Stationary problems

Mathematics Subject Classification

  • 35J47
  • 35A01