Entire Solution in Cylinder-Like Domains for a Bistable Reaction–Diffusion Equation

Article

Abstract

We construct nontrivial entire solutions for a bistable reaction–diffusion equation in a class of domains that are unbounded in one direction. The motivation comes from recent results of Berestycki et al. (Calc Var Partial Differ Equ 55(3):1–32, 2016) concerning propagation and blocking phenomena in infinite domains. A key assumption in their study was the “cylinder-like” assumption: their domains are supposed to be straight cylinders in a half space. The purpose of this paper is to consider domains that tend to a straight cylinder in one direction. We need a different approach based on the long time stability of the bistable wave in heterogeneous media. We also prove the existence of an entire solution for a one-dimensional problem with a non-homogeneous linear term.

Keywords

Reaction-diffusion equations Invasion fronts Bistable equations 

References

  1. 1.
    Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In Partial Differential Equations and Related Topics (Program, Tulane University, New Orleans, LA, 1974). Lecture Notes in Mathematics, vol. 446, pp 5–49. Springer, Berlin (1975)Google Scholar
  2. 2.
    Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33–76 (1978)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Berestycki, H., Bouhours, J., Chapuisat, G.: Front blocking and propagation in cylinders with varying cross section. Calc. Var. Partial Differ. Equ. 55(3), 1–32 (2016)Google Scholar
  4. 4.
    Berestycki, H., Hamel, F.: Generalized transition waves and their properties. Commun. Pure Appl. Math. 65(5), 592–648 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Berestycki, H., Hamel, F., Matano, H.: Bistable traveling waves around an obstacle. Commun. Pure Appl. Math. 62(6), 729–788 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Berestycki, H., Nirenberg, L.: Travelling fronts in cylinders. Ann. Inst. H. Poincaré Anal. Non Linéaire 9(5), 497–572 (1992)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chapuisat, G., Grenier, E.: Existence and nonexistence of traveling wave solutions for a bistable reaction–diffusion equation in an infinite cylinder whose diameter is suddenly increased. Commun. Partial Differ. Equ. 30(10–12), 1805–1816 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fife, P.C., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65(4), 335–361 (1977)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)MATHGoogle Scholar
  10. 10.
    Guo, J.-S., Morita, Y.: Entire solutions of reaction–diffusion equations and an application to discrete diffusive equations. Discrete Contin. Dyn. Syst. 12(2), 193–212 (2005)MathSciNetMATHGoogle Scholar
  11. 11.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equation. Lecture Notes in Mathematics. Springer, Berlin (1981)CrossRefGoogle Scholar
  12. 12.
    Kolmogorov, A., Petrovsky, I., Piskounov, N.: Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. Etat Moscou 1, 1–26 (1937)Google Scholar
  13. 13.
    Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1968)Google Scholar
  14. 14.
    Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel (1995)CrossRefGoogle Scholar
  15. 15.
    Matano, H.: Talk presented at IHP, Paris, September 2002Google Scholar
  16. 16.
    Mellet, A., Roquejoffre, J.-M., Sire, Y.: Generalized fronts for one-dimensional reaction–diffusion equations. Discrete Contin. Dyn. Syst. 26(1), 303–312 (2010)MathSciNetMATHGoogle Scholar
  17. 17.
    Nolen, J., Ryzhik, L.: Traveling waves in a one-dimensional heterogeneous medium. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(3), 1021–1047 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Roquejoffre, J.-M.: Stability of travelling fronts in a model for flame propagation. II. Nonlinear stability. Arch. Ration. Mech. Anal. 117(2), 119–153 (1992)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Sattinger, D.H.: On the stability of waves of nonlinear parabolic systems. Adv. Math. 22(3), 312–355 (1976)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Zlatoš, A.: Existence and non-existence of transition fronts for bistable and ignition reactions. Ann. Inst. H. Poincaré Anal. Non Linéaire (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations