Dynamics of Laminated Timoshenko Beams


This paper is concerned with long-time dynamics of laminated beams modeled from the well established Timoshenko system. Of particular interest is a model of two-layered beam proposed by Hansen and Spies which describes the slip effect produced by a thin adhesive layer uniting the structure. In a more general setting, involving a nonlinear foundation, we establish the existence of smooth finite dimensional global attractors for the corresponding solution semigroup.

This is a preview of subscription content, log in to check access.


  1. 1.

    Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations, Studies in Mathematics and its Application, vol. 25. North-Holland, Amsterdam (1992)

    Google Scholar 

  2. 2.

    Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, New York (2010)

    Google Scholar 

  3. 3.

    Cao, X.G., Liu, D.Y., Xu, G.Q.: Easy test for stability of laminated beams with structural damping and boundary feedback controls. J. Dyn. Control Syst. 13, 313–336 (2007)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Chueshov, I.D.: Dynamics of Quasi-Stable Dissipative Systems. Universitext, Springer, Cham (2015)

    Google Scholar 

  5. 5.

    Chueshov, I., Lasiecka, I.: Attractors for second-order evolution equations with a nonlinear damping. J. Dyn. Differ. Equ. 16, 469–512 (2004)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Chueshov, I., Lasiecka, I.: Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics. Springer Monographs in Mathematics. Springer, New York (2010)

    Google Scholar 

  7. 7.

    Chueshov, I., Eller, M., Lasiecka, I.: On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Comm. Partial Differ. Equ. 27, 1901–1951 (2002)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Fastovska, T.: Upper semicontinuous attractors for a 2D Mindlin–Timoshenko thermo-viscoelastic model with memory. Nonlinear Anal. 71, 4833–4851 (2009)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Fatori, L.H., Jorge, M.A., Jorge Silva, M.A., Narciso, V.: Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete Contin. Dyn. Syst. 36, 6117–6132 (2016)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Feng, B., Yang, X.-G.: Long-time dynamics for a nonlinear Timoshenko system with delay. Appl. Anal. 96, 606–625 (2017)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Guesmia, A., Messaoudi, S.A.: A general stability result in a Timoshenko system with infinite memory: a new approach. Math. Methods Appl. Sci. 37, 384–392 (2014)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Hale, J.K.: Asymptotic Behavior of Dissipative Systems. Math. Surveys Monogr., vol. 25. American Mathematical Society, Providence (1988)

    Google Scholar 

  13. 13.

    Hansen, S.W.: A model for a two-layered plate with interfacial slip. In: Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena (Vorau, 1993), pp. 143–170. Birkhauser, Basel (1994)

    Google Scholar 

  14. 14.

    Hansen, S.W., Spies, R.: Structural damping in a laminated beam duo to interfacial slip. J. Sound Vib. 204, 183–202 (1997)

    Article  Google Scholar 

  15. 15.

    Ladyzhenskaya, O.: Attractors for Semi-groups and Evolution Equations. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  16. 16.

    Lasiecka, I., Ruzmaikina, A.A.: Finite dimensionality and regularity of attractors for a 2-D semilinear wave equation with nonlinear dissipation. J. Math. Anal. Appl. 270, 16–50 (2002)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Lo, A., Tatar, N.-E.: Exponential stabilization of a structure with interfacial slip. Discrete Contin. Dyn. Syst. 36, 6285–6306 (2016)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Ma, T.F., Monteiro, R.N.: Singular limit and long-time dynamics of Bresse systems. SIAM J. Math. Anal. (to appear)

  19. 19.

    Pei, P., Rammaha, M.A., Toundykov, D.: Local and global well-posedness of semilinear Reissner–Mindlin–Timoshenko plate equations. Nonlinear Anal. 105, 62–85 (2014)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Raposo, C.A.: Exponential stability for a structure with interfacial slip and frictional damping. Appl. Math. Lett. 53, 85–91 (2016)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Soufyane, A.: Stabilisation de la poutre de Timoshenko. C. R. Acad. Sci. Paris Sér. I Math. 328(8), 731–734 (1999)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Tatar, N.-E.: Stabilization of a laminated beam with interfacial slip by boundary controls. Bound. Value Probl. 2015, 169 (2015). doi:10.1186/s13661-015-0432-3

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Appl. Math. Sci. Springer, New York (1988)

    Google Scholar 

  24. 24.

    Timoshenko, S.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. 41, 744–746 (1921)

    Article  Google Scholar 

  25. 25.

    Wang, J.M., Xu, G.Q., Yung, S.P.: Exponential stabilization of laminated beams with structural damping and boundary feedback controls. SIAM J. Control Optim. 44, 1575–1597 (2005)

    MathSciNet  Article  Google Scholar 

Download references


The authors thank the referee for his/her constructive remarks on a previous version of the paper. They also thank the partial support of CNPq (Brazil).

Author information



Corresponding author

Correspondence to R. N. Monteiro.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, B., Ma, T.F., Monteiro, R.N. et al. Dynamics of Laminated Timoshenko Beams. J Dyn Diff Equat 30, 1489–1507 (2018). https://doi.org/10.1007/s10884-017-9604-4

Download citation


  • Timoshenko system
  • Laminated beam
  • Interfacial slip
  • Global attractor
  • Superlinear damping
  • Quasi-stable systems

Mathematics Subject Classification

  • 35B41
  • 35L53
  • 74K10