Journal of Dynamics and Differential Equations

, Volume 30, Issue 4, pp 1489–1507 | Cite as

Dynamics of Laminated Timoshenko Beams

  • B. Feng
  • T. F. Ma
  • R. N. MonteiroEmail author
  • C. A. Raposo


This paper is concerned with long-time dynamics of laminated beams modeled from the well established Timoshenko system. Of particular interest is a model of two-layered beam proposed by Hansen and Spies which describes the slip effect produced by a thin adhesive layer uniting the structure. In a more general setting, involving a nonlinear foundation, we establish the existence of smooth finite dimensional global attractors for the corresponding solution semigroup.


Timoshenko system Laminated beam Interfacial slip Global attractor Superlinear damping Quasi-stable systems 

Mathematics Subject Classification

35B41 35L53 74K10 



The authors thank the referee for his/her constructive remarks on a previous version of the paper. They also thank the partial support of CNPq (Brazil).


  1. 1.
    Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations, Studies in Mathematics and its Application, vol. 25. North-Holland, Amsterdam (1992)Google Scholar
  2. 2.
    Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, New York (2010)CrossRefGoogle Scholar
  3. 3.
    Cao, X.G., Liu, D.Y., Xu, G.Q.: Easy test for stability of laminated beams with structural damping and boundary feedback controls. J. Dyn. Control Syst. 13, 313–336 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chueshov, I.D.: Dynamics of Quasi-Stable Dissipative Systems. Universitext, Springer, Cham (2015)CrossRefGoogle Scholar
  5. 5.
    Chueshov, I., Lasiecka, I.: Attractors for second-order evolution equations with a nonlinear damping. J. Dyn. Differ. Equ. 16, 469–512 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chueshov, I., Lasiecka, I.: Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics. Springer Monographs in Mathematics. Springer, New York (2010)CrossRefGoogle Scholar
  7. 7.
    Chueshov, I., Eller, M., Lasiecka, I.: On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Comm. Partial Differ. Equ. 27, 1901–1951 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fastovska, T.: Upper semicontinuous attractors for a 2D Mindlin–Timoshenko thermo-viscoelastic model with memory. Nonlinear Anal. 71, 4833–4851 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fatori, L.H., Jorge, M.A., Jorge Silva, M.A., Narciso, V.: Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete Contin. Dyn. Syst. 36, 6117–6132 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Feng, B., Yang, X.-G.: Long-time dynamics for a nonlinear Timoshenko system with delay. Appl. Anal. 96, 606–625 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Guesmia, A., Messaoudi, S.A.: A general stability result in a Timoshenko system with infinite memory: a new approach. Math. Methods Appl. Sci. 37, 384–392 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hale, J.K.: Asymptotic Behavior of Dissipative Systems. Math. Surveys Monogr., vol. 25. American Mathematical Society, Providence (1988)zbMATHGoogle Scholar
  13. 13.
    Hansen, S.W.: A model for a two-layered plate with interfacial slip. In: Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena (Vorau, 1993), pp. 143–170. Birkhauser, Basel (1994)CrossRefGoogle Scholar
  14. 14.
    Hansen, S.W., Spies, R.: Structural damping in a laminated beam duo to interfacial slip. J. Sound Vib. 204, 183–202 (1997)CrossRefGoogle Scholar
  15. 15.
    Ladyzhenskaya, O.: Attractors for Semi-groups and Evolution Equations. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar
  16. 16.
    Lasiecka, I., Ruzmaikina, A.A.: Finite dimensionality and regularity of attractors for a 2-D semilinear wave equation with nonlinear dissipation. J. Math. Anal. Appl. 270, 16–50 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lo, A., Tatar, N.-E.: Exponential stabilization of a structure with interfacial slip. Discrete Contin. Dyn. Syst. 36, 6285–6306 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ma, T.F., Monteiro, R.N.: Singular limit and long-time dynamics of Bresse systems. SIAM J. Math. Anal. (to appear)Google Scholar
  19. 19.
    Pei, P., Rammaha, M.A., Toundykov, D.: Local and global well-posedness of semilinear Reissner–Mindlin–Timoshenko plate equations. Nonlinear Anal. 105, 62–85 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Raposo, C.A.: Exponential stability for a structure with interfacial slip and frictional damping. Appl. Math. Lett. 53, 85–91 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Soufyane, A.: Stabilisation de la poutre de Timoshenko. C. R. Acad. Sci. Paris Sér. I Math. 328(8), 731–734 (1999)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tatar, N.-E.: Stabilization of a laminated beam with interfacial slip by boundary controls. Bound. Value Probl. 2015, 169 (2015). doi: 10.1186/s13661-015-0432-3 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Appl. Math. Sci. Springer, New York (1988)CrossRefGoogle Scholar
  24. 24.
    Timoshenko, S.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. 41, 744–746 (1921)CrossRefGoogle Scholar
  25. 25.
    Wang, J.M., Xu, G.Q., Yung, S.P.: Exponential stabilization of laminated beams with structural damping and boundary feedback controls. SIAM J. Control Optim. 44, 1575–1597 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • B. Feng
    • 1
  • T. F. Ma
    • 2
  • R. N. Monteiro
    • 3
    Email author
  • C. A. Raposo
    • 4
  1. 1.Faculty of Economic MathematicsSouthwestern University of Finance and EconomicsChengduPeople’s Republic of China
  2. 2.Institute of Mathematical and Computer SciencesUniversity of São PauloSão CarlosBrazil
  3. 3.National Laboratory of Scientific ComputationPetrópolisBrazil
  4. 4.Department of Mathematics and StatisticsFederal University of São João del-ReiSão João del-ReiBrazil

Personalised recommendations