Journal of Dynamics and Differential Equations

, Volume 28, Issue 3–4, pp 897–923 | Cite as

Pinning and Unpinning in Nonlocal Systems

  • Taylor Anderson
  • Grégory Faye
  • Arnd Scheel
  • David Stauffer


We investigate pinning regions and unpinning asymptotics in nonlocal equations. We show that phenomena are related to but different from pinning in discrete and inhomogeneous media. We establish unpinning asymptotics using geometric singular perturbation theory in several examples. We also present numerical evidence for the dependence of unpinning asymptotics on regularity of the nonlocal convolution kernel.


Front pinning Singular perturbations Traveling waves Nonlocal coupling 



This research was conducted during Summer 2014 in the REU: Complex Systems at the University of Minnesota Department of Mathematics, funded by the National Science Foundation (DMS-1311414) and (DMS-1311740).


  1. 1.
    Bates, P., Fife, P., Ren, X., Wang, X.: Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech.Anal. 138, 105–136 (1997)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Broer, H., Kaper, T., Krupa, M.: Geometric desingularization of a cusp singularity in slow-fast systems with applications to Zeeman’s examples. J. Dyn. Differ. Equ. 25, 925–958 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Carpio, A., Bonilla, L.: Wave front depinning transition in discrete one-dimensional reaction diffusion systems. Phys. Rev. Lett. 86(26), 6034–6037 (2001)CrossRefGoogle Scholar
  4. 4.
    Chen, X.: Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Differ. Equ. 2, 125–160 (1997)MathSciNetMATHGoogle Scholar
  5. 5.
    Chmaj, A.: Existence of traveling waves in the fractional bistable equation. Arch. Math. 100, 473–480 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Faye, G., Scheel, A.: Fredholm properties of nonlocal differential operators via spectral flow. Indiana Univ. Math. J. 63, 1311–1348 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Faye, G., Scheel, A.: Existence of pulses in excitable media with nonlocal coupling. Adv. Math. 270, 400–456 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Krupa, M., Szmolyan, P.: Geometric singular perturbation theory to nonhyperbolic points: fold and canard points in two dimensions. SIAM J. Math. Anal. 33, 286–314 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Mishchenko, E., Kolesov, Y., Kolesov, A., Rozov, N.: Asymptotic Methods in Singularly Perturbed Systems. Monogr. Contemp. Math, Consultants Bureau, New York (1994)Google Scholar
  11. 11.
    Scheel, A., van Vleck, E.: Lattice differential equations embedded into reaction–diffusion systems. Proc. R. Soc. Edinb. A 139A, 193–207 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Szmolyan, P., Wechselberger, M.: Relaxation oscillations in \(\mathbb{R}^3\). J. Differ. Equ. 200, 69–104 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    van Gils, S., Krupa, M., Szmolyan, P.: Asymptotic expansions using blow-up. ZAMP 56(3), 369–397 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Taylor Anderson
    • 1
  • Grégory Faye
    • 2
    • 4
  • Arnd Scheel
    • 2
  • David Stauffer
    • 3
  1. 1.Department of Mathematics and StatisticsMount Holyoke CollegeSouth HadleyUSA
  2. 2.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of MathematicsCornell UniversityIthacaUSA
  4. 4.CNRS, UMR 5219Institut de Mathématiques de ToulouseToulouse CedexFrance

Personalised recommendations