Skip to main content
Log in

Asymptotic Behavior of the Principal Eigenvalue for Cooperative Elliptic Systems and Applications

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The asymptotic behavior of the principal eigenvalue for general linear cooperative elliptic systems with small diffusion rates is determined. As an application, we show that if a cooperative system of ordinary differential equations has a unique positive equilibrium which is globally asymptotically stable, then the corresponding reaction-diffusion system with either the Neumann boundary condition or the Robin boundary condition also has a unique positive steady state which is globally asymptotically stable, provided that the diffusion coefficients are sufficiently small. Moreover, as the diffusion coefficients approach zero, the positive steady state of the reaction-diffusion system converges uniformly to the equilibrium of the corresponding kinetic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cantrell, R.S., Cosner, C.: On the effects of spatial heterogeneity on the persistence of interacting species. J. Math. Biol. 37, 103–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology. John Wiley and Sons, Chichester (2003)

    MATH  Google Scholar 

  3. Dancer, E.N.: On the principal eigenvalue of linear cooperating elliptic system with small diffusion. J. Evolut. Eqns. 9, 419–428 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Figueiredo, D., Mitidieri, E.: Maximum principles for linear elliptic systems. Rend. Istit. Mat. Univ. Trieste 22, 36–66 (1990)

    MathSciNet  MATH  Google Scholar 

  5. Gantmacher, F.: Theory of Matrices. AMS Chelsea publishing, New York (1959)

    MATH  Google Scholar 

  6. He, X., Ni, W.-M.: The effects of diffusion and spatial variation in Lotka–Volterra competition-diffusion system I: Heterogeneity vs. homogeneity. J. Diff. Eqns. 254, 528–546 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. He, X., Ni, W.-M.: The effects of diffusion and spatial variation in Lotka–Volterra competition-diffusion system II: the general case. J. Diff. Eqns. 254, 4088–4108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. He, X., Ni, W.-M.: Global dynamics of the Lotka–Volterra competition-diffusion system: diffusion and spatial heterogeneity, I. Comm. Pure Appl. Math. (to appear)

  9. Hess, P.: Periodic Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics Series 247. Longman Scientific & Technical, Harlow (1991)

    Google Scholar 

  10. Hutson, V.: Private communication

  11. Hutson, V., Lou, Y., Mischaikow, K.: Convergence in competition models with small diffusion coefficients. J. Diff. Eqns. 211, 135–161 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hsu, S.-B., Smith, H., Waltman, P.: Competitive exclusion and coexistence for competitive systems on ordered Banach spaces. Trans. Am. Math. Soc. 348, 4083–4094 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Iida, M., Tatsuya, M., Ninomiya, H., Yanagida, E.: Diffusion-induced extinction of a superior species in a competition system. Jpn. J. Ind. Appl. Math. 15, 223–252 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Krein, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space. Uspehi Mat. Nauk (N.S.) 3(1(23)), 3–95 (1948)

    MathSciNet  MATH  Google Scholar 

  15. Lam, K.-Y., Ni, W.-M.: Uniqueness and complete dynamics in the heterogeneous competition-diffusion systems. SIAM J. Appl. Math. 72, 1695–1712 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lou, Y.: On the effects of migration and spatial inhomogeneity on single and multiple species. J. Diff. Eqns. 223, 400–426 (2006)

    Article  MATH  Google Scholar 

  17. Nagel, R.: Operator matrices and reaction-diffusion systems. Rend. Semin. Mat. Fis. Milano 59, 185–196 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ninomiya, H.: Separatrices of competition-diffusion equations. J. Math. Kyoto Univ. 35, 539–567 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Pacala, S., Roughgarden, J.: Spatial heterogeneity and interspecific competition. Theor. Pop. Biol. 21, 92–113 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations, 2nd edn. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  21. Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1992)

    MATH  Google Scholar 

  22. Sattinger, D.: Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J. 21, 979–1000 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  23. Smith, H.: Monotone Dynamical Systems, an Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs. American Mathematical Society, Providence (1995)

    Google Scholar 

  24. Sweers, G.: Strong positivity in \(C(\bar{\Omega })\) for elliptic systems. Math. Z. 209, 251–271 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the NSF Grants DMS-1021179 and DMS-1411476, and has been supported in part by the Mathematical Biosciences Institute and the National Science Foundation under Grant DMS-0931642.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to King-Yeung Lam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, KY., Lou, Y. Asymptotic Behavior of the Principal Eigenvalue for Cooperative Elliptic Systems and Applications. J Dyn Diff Equat 28, 29–48 (2016). https://doi.org/10.1007/s10884-015-9504-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-015-9504-4

Keywords

Mathematics Subject Classification

Navigation