Skip to main content
Log in

Speed Selection and Stability of Wavefronts for Delayed Monostable Reaction-Diffusion Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We study the asymptotic stability of traveling fronts and the front’s velocity selection problem for the time-delayed monostable equation \((*)\) \(u_{t}(t,x) = u_{xx}(t,x) - u(t,x) + g(u(t-h,x)),\) \(x \in {\mathbb R},\ t >0,\) with Lipschitz continuous reaction term \(g: {\mathbb R}_+ \rightarrow {\mathbb R}_+\). We also assume that g is \(C^{1,\alpha }\)-smooth in some neighbourhood of the equilibria 0 and \(\kappa >0\) to \((*)\). In difference with the previous works, we do not impose any convexity or subtangency condition on the graph of g so that equation \((*)\) can possess the pushed traveling fronts. Our first main result says that the non-critical wavefronts of \((*)\) with monotone g are globally nonlinearly stable. In the special and easier case when the Lipschitz constant for g coincides with \(g'(0)\), we prove a series of results concerning the exponential (asymptotic) stability of non-critical (respectively, critical) fronts for the monostable model \((*)\). As an application, we present a criterion of the absolute global stability of non-critical wavefronts to the diffusive non-monotone Nicholson’s blowflies equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguerrea, M., Gomez, C., Trofimchuk, S.: On uniqueness of semi-wavefronts (Diekmann-Kaper theory of a nonlinear convolution equation re-visited.). Math. Ann. 354, 73–109 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aronson, D.G., Weinberger, H.F.: Nonlinear Diffusion in Population Genetics, Combustion, and Nerve Pulse Propagation. Lecture Notes in Mathematics, vol. 446. Springer, Berlin (1977)

    MATH  Google Scholar 

  3. Bani-Yaghoub, M., Yao, G.-M., Fujiwara, M., Amundsen, D.E.: Understanding the interplay between density dependent birth function and maturation time delay using a reaction-diffusion population model. Ecol. Complex. 21, 14–26 (2015)

    Article  Google Scholar 

  4. Benguria, R.D., Depassier, M.C.: Variational characterization of the speed of propagation of fronts for the nonlinear diffusion equation. Commun. Math. Phys. 175, 221–227 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benguria, R.D., Depassier, M.C., Loss, M.: Upper and lower bounds for the speed of pulled fronts with a cut-off. Eur. Phys. J. B 61, 331–334 (2008)

    Article  Google Scholar 

  6. Bonnefon, O., Garnier, J., Hamel, F., Roques, L.: Inside dynamics of delayed traveling waves. Math. Model. Nat. Phenom. 8, 42–59 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X., Guo, J.S.: Existence and asymptotic stability of travelling waves of discrete quasilinear monostable equations. J. Differ. Equ. 184, 549–569 (2002)

    Article  MATH  Google Scholar 

  8. Chern, I.L., Mei, M., Yang, X., Zhang, Q.: Stability of non-monotone critical traveling waves for reaction–diffusion equations with time-delay. J. Diff. Equ. 259, 1503–1541 (2015). doi:10.1016/j.jde.2015.03.003

    Article  MathSciNet  MATH  Google Scholar 

  9. Faria, T., Trofimchuk, S.: Positive travelling fronts for reaction-diffusion systems with distributed delay. Nonlinearity 23, 2457–2481 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fife, P., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Rat. Mech. Anal. 65, 335–361 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  12. Garnier, J., Giletti, T., Hamel, F., Roques, L.: Inside dynamics of pulled and pushed fronts. J. de Mathématiques Pures et Appliquées 98, 428–449 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gomez, C., Prado, H., Trofimchuk, S.: Separation dichotomy and wavefronts for a nonlinear convolution equation. J. Math. Anal. Appl. 420, 1–19 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gomez, A., Trofimchuk, S.: Global continuation of monotone wavefronts. J. Lond. Math. Soc. 89, 47–68 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gurney, W., Blythe, S., Nisbet, R.: Nicholson’s blowflies revisited. Nature 287, 17–21 (1980)

    Article  Google Scholar 

  16. Hadeler, K.P., Rothe, F.: Travelling fronts in nonlinear diffusion equations. J. Math. Biol. 2, 251–263 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ivanov, A., Gomez, C., Trofimchuk, S.: On the existence of non-monotone non-oscillating wavefronts. J. Math. Anal. Appl. 419, 606–616 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jankovic, M., Petrovskii, S.: Are time delays always destabilizing? Revisiting the role of time delays and the Allee effect. Theor. Ecol. 7, 335–349 (2014)

    Article  Google Scholar 

  19. Jin, Ch., Yin, J., Wang, C.: Large time behavior of solutions for the heat equation with spatio-temporal delay. Nonlinearity 21, 823–840 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kyrychko, Y., Gourley, S.A., Bartuccelli, M.V.: Comparison and convergence to equilibrium in a nonlocal delayed reaction-diffusion model on an infinite domain. Discret. Contin. Dyn. Syst. Ser. B. 5, 1015–1026 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liang, X., Zhao, X.-Q.: Spreading speeds and traveling waves for abstract monostable evolution systems. J. Funct. Anal. 259, 857–903 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin, C.K., Lin, C.T., Lin, Y., Mei, M.: Exponential stability of nonmonotone traveling waves for Nicholsons blowflies equation. SIAM J. Math. Anal. 46, 1053–1084 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lv, G., Wang, M.: Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations. Nonlinearity 23, 845–873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma, S.: Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J. Differ. Equ. 171, 294–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma, S., Zou, X.: Existence, uniqueness and stability of traveling waves in a discrete reaction-diffusion monostable equation with delay. J. Diff. Equ. 217, 54–87 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mallet-Paret, J.: Morse decompositions for delay-differential equations. J. Differ. Equ. 72, 270–315 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mallet-Paret, J.: The Fredholm alternative for functional differential equations of mixed type. J. Dyn. Diff. Eqn. 11, 1–48 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mallet-Paret, J., Sell, G.R.: Systems of delay differential equations I: Floquet multipliers and discrete Lyapunov functions. J. Differ. Equ. 125, 385–440 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mallet-Paret, J., Sell, G.R.: The Poincare-Bendixson theorem for monotone cyclic feedback systems with delay. J. Differ. Equ. 125, 441–489 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mei, M., Lin, C.K., Lin, C.T., So, J.W.-H.: Traveling wavefronts for time-delayed reaction-diffusion equation, (I) local nonlinearity. J. Diff. Equ. 247, 495–510 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mei, M., Lin, C.K., Lin, C.T., So, J.W.-H.: Traveling wavefronts for time-delayed reaction-diffusion equation, (II) nonlocal nonlinearity. J. Diff. Equ. 247, 511–529 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mei, M., Ou, Ch., Zhao, X.-Q.: Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations. SIAM J. Math. Anal. 42, 2762–2790 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mei, M., So, J.W.-H., Li, M.Y., Shen, S.S.P.: Asymptotic stability of traveling waves for the Nicholsons blowflies equation with diffusion. Proc. R. Soc. Edinb. A 134, 579–594 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mei, M., Wang, Y.: Remark on stability of traveling waves for nonlocal Fisher-KPP equations. Int. J. Numer. Anal. Model. Ser. B 2, 379–401 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Ogiwara, T., Matano, H.: Monotonicity and convergence results in order-preserving systems in the presence of symmetry. Discret. Contin. Dynam. Syst. 5, 1–34 (1999)

    MathSciNet  MATH  Google Scholar 

  36. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  37. Roques, L., Garnier, J., Hamel, F., Klein, E.K.: Allee effect promotes diversity in traveling waves of colonization. Proc. Natl. Acad. Sci. USA 109, 8828–8833 (2012)

    Article  MathSciNet  Google Scholar 

  38. Rothe, F.: Convergence to pushed fronts. Rocky Mt. J. Math. 11, 617–633 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  39. van Saarloos, W.: Front propagation into unstable states. Phys. Rep. 386, 29–222 (2003)

    Article  MATH  Google Scholar 

  40. Sattinger, D.H.: On the stability of waves of nonlinear parabolic systems. Adv. Math. 22, 312–355 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schaaf, K.: Asymptotic behavior and traveling wave solutions for parabolic functional-differential equations. Trans. Am. Math. Soc. 302, 587–615 (1987)

    MathSciNet  MATH  Google Scholar 

  42. Smith, H.L., Zhao, X.-Q.: Global asymptotic stability of traveling waves in delayed reaction-diffusion equations. SIAM J. Math. Anal. 31, 514–534 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Smith, H.L.: Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative systems. AMS, Providence (1995)

    MATH  Google Scholar 

  44. Solar, A., Trofimchuk, S.: Asymptotic convergence to a pushed wavefront in monostable equations with delayed reaction. Nonlinearity 28, 2027–2052 (2015)

  45. Stokes, A.N.: On two types of moving front in quasilinear diffusion. Math. Biosci. 31, 307–315 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  46. Trofimchuk, E., Tkachenko, V., Trofimchuk, S.: Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay. J. Differ. Equ. 245, 2307–2332 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Trofimchuk, E., Pinto, M., Trofimchuk, S.: Pushed traveling fronts in monostable equations with monotone delayed reaction. Discret. Contin. Dyn. Syst. 33, 2169–2187 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Uchiyama, K.: The behavior of solutions of some nonlinear diffusion equations for large time. J. Math. Kyoto Univ. 18, 453–508 (1978)

    MathSciNet  MATH  Google Scholar 

  49. Wang, Z.C., Li, W.T., Ruan, S.: Travelling fronts in monostable equations with nonlocal delayed effects. J. Dyn. Diff. Eqn. 20, 563–607 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Wu, J., Zou, X.: Traveling wave fronts of reaction-diffusion systems with delay. J. Dyn. Diff. Eqns. 13, 651–687 (2001). [Erratum in J. Dynam. Diff. Eqns.20, 531–533 (2008)]

    Article  MathSciNet  MATH  Google Scholar 

  51. Wu, S.L., Zhao, H.Q., Liu, S.Y.: Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability. Z. Angew. Math. Phys. 62, 377–397 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the anonymous referee whose valuable comments helped to improve the original version of the paper. This research was supported by FONDECYT (Chile) 1150480. We also thank Viktor Tkachenko (Institute of Mathematics in Kyiv, Ukraine) and Robert Hakl (Mathematical Institute in Brno, Czech Republic) for useful discussions. Especially we would like to acknowledge FONDECYT (Chile), project 1110309, and CONICYT (Chile), Project MEC 80130046, for supporting the research stays of Dr. Tkachenko and Dr. Hakl, respectively, at the University of Talca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Trofimchuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solar, A., Trofimchuk, S. Speed Selection and Stability of Wavefronts for Delayed Monostable Reaction-Diffusion Equations. J Dyn Diff Equat 28, 1265–1292 (2016). https://doi.org/10.1007/s10884-015-9482-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-015-9482-6

Keywords

Mathematics Subject Classification

Navigation