Skip to main content
Log in

Multi-type Entire Solutions in a Nonlocal Dispersal Epidemic Model

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper deals with entire solutions of a nonlocal dispersal epidemic model. Unlike local (random) dispersal problems, a nonlocal dispersal operator is not compact and the solutions of nonlocal dispersal system studied here lack regularity in suitable spaces, which affects the uniform convergence of the solution sequences and the technique details in constructing the entire solutions. In the monostable case, some new types of entire solutions are constructed by combining leftward and rightward traveling fronts with different speeds and a spatially independent solution. In the bistable case, the existence of many different entire solutions with merging fronts are proved by constructing different sub- and super-solutions. Various qualitative features of the entire solutions are also investigated. A key idea is to characterize the asymptotic behaviors of the traveling wave solutions at infinite in terms of appropriate sub- and super-solutions. Finally, we also obtain the smoothness of the entire solutions in space, i.e., the solutions established in our paper are global Lipschitz continuous in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.: Nonlocal Diffusion Problems, Mathematical Surveys and Monographs. AMS, Providence (2010)

    Book  MATH  Google Scholar 

  2. Bates, P.W.: On some nonlocal evolution equations arising in materials science. In: Brunner, H., Zhao, X.Q., Zou, X. (eds.) Nonlinear Dynamics and Evolution Equations. Fields Institute Communications, vol. 48, pp. 13–52. AMS, Providence (2006)

    Google Scholar 

  3. Bates, P., Fife, P., Ren, X., Wang, X.: Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 138, 105–136 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carr, J., Chmaj, A.: Uniqueness of travelling waves for nonlocal monostable equations. Proc. Am. Math. Soc. 132, 2433–2439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Capasso, V.: Mathematical Structures of Epidemic Systems, Lecture Notes in Biomath, vol. 97. Springer-Verlag, Heidelberg (1993)

    Book  Google Scholar 

  6. Capasso, V., Kunisch, K.: A reaction-diffusion system arising in modelling man-environment diseases. Q. Appl. Math. 46, 431–450 (1988)

    MathSciNet  MATH  Google Scholar 

  7. Capasso, V., Maddalena, L.: Convergence to equilibrium states for a reaction-diffusion system modeling the spatial spread of a class of bacterial and viral diseases. J. Math. Biol. 13, 173–184 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Capasso, V., Maddalena, L.: Saddle point behavior for a reaction-diffusion system: application to a class of epidemic models. Math. Comput. Simul. 24, 540–547 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Capasso, V., Paveri-Fontana, S.: A mathematical model for the 1973 cholera epidemic in the European Mediterranean region. Revue d’Epidemical. et de Santé Publique. 27, 121–132 (1979)

    Google Scholar 

  10. Coville, J., Dupaigne, L.: On a nonlocal reaction-diffusion eqution arising in population dynamics. Proc. R. Soc. Edinburgh 137A, 727–755 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Crooks, E.C.M., Tsai, J.C.: Front-like entire solutions for equations with convection. J. Differ. Equ. 253, 1206–1249 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, X.: Existence, uniqueness and asymptotical stability of travelling fronts in non-local evolution equations. Adv. Differ. Equ. 2, 125–160 (1997)

    Google Scholar 

  13. Chen, X., Guo, J.S.: Existence and uniqueness of entire solutions for a reaction-diffusion equation. J. Differ. Equ. 212, 62–84 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, X., Guo, J.S., Ninomiya, H.: Entire solutions of reaction-diffusion equations with balanced bistable nonlinearity. Proc. R. Soc. Edinburgh 136A, 1207–1237 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ermentrout, B., Mcleod, J.: Existence and uniqueness of traveling waves for a neural network. Proc. R. Soc. Edinburgh 123A, 461–478 (1994)

    MathSciNet  MATH  Google Scholar 

  16. Fang, J., Zhao, X.Q.: Bistable traveling waves for monotone semiflows with applications. J. Eur. Math. Soc. 7, 173–213 (2005)

    Google Scholar 

  17. Fife, P.C., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fukao, Y., Morita, Y., Ninomiya, H.: Some entire solutions of the Allen–Cahn equation. Taiwan. J. Math. 8, 15–32 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Gourley, S.A., Wu, J.: Delayed nonlocal diffusive systems in biological invasion and disease spread. Fields Inst. Commun. 48, 137–200 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Guo, J.S., Morita, Y.: Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discret. Contin. Dyn. Syst. 12, 193–212 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Guo, J.S., Wu, C.H.: Entire solutions for a two-component competition system in a lattice. Tohoku Math. J. 62, 17–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hamel, F., Nadirashvili, N.: Entire solution of the KPP eqution. Commun. Pure Appl. Math. 52, 1255–1276 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hamel, F., Nadirashvili, N.: Travelling fronts and entire solutions of the Fisher-KPP equation in \(R^{N}\). Arch. Ration. Mech. Anal. 157, 91–163 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kao, C.Y., Lou, Y., Shen, W.: Random dispersal vs non-local dispersal. Discret. Contin. Dyn. Syst. 26, 551–596 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Lee, C.T., et al.: Non-local concepts in models in biology. J. Theor. Biol. 210, 201–219 (2001)

    Article  Google Scholar 

  26. Li, W.T., Sun, Y.J., Wang, Z.C.: Entire solutions in the Fisher-KPP equation with nonlocal dispersal. Nonlinear Anal. Real World Appl. 11, 2302–2313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, W.T., Wang, Z.C., Wu, J.: Entire solutions in monostable reaction-diffusion eqautions with delayed nonlinearity. J. Differ. Equ. 245, 102–129 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, W.T., Liu, N.W., Wang, Z.C.: Entire solutions in reaction-advection-diffusion equations in cylinders. J. Math. Pures Appl. 90, 492–504 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, W.T., Zhang, L., Zhang, G.B. : Invasion entire solutions in a competition system with nonlocal dispersal. Discrete Contin. Dyn. Syst. 35, 1531–1560 (2015)

  30. Liu, N.W., Li, W.T., Wang, Z.C.: Entire solutions of reaction-advection-diffusion equations with bistable nonlinearity in cylinders. J. Differ. Equ. 246, 4249–4267 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Martin, R.H., Smith, H.L.: Abstract functional differential equations and reaction-diffusion equations. Trans. Am. Math. Soc. 321, 1–44 (1990)

    MathSciNet  MATH  Google Scholar 

  32. Morita, Y., Ninomiya, H.: Entire solutions with merging fronts to reaction-diffusion equations. J. Dyn. Diff. Eqns. 18, 841–861 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Morita, Y., Tachibana, K.: An entire solution to the Lotka–Volterra competition-diffusion equations. SIAM J. Math. Anal. 40, 2217–2240 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Murray, J.: Mathematical Biology, 3rd edn. Springer, Berlin, Heidelberg, New York (1993)

    Book  MATH  Google Scholar 

  35. Pan, S., Li, W.T., Lin, G.: Travelling wave fronts in nonlocal reaction-diffusion systems and applications. Z. Angew. Math. Phys. 60, 377–392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Roquejoffre, J.M.: Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders. Ann. Inst. H. Poincaré Anal. Non Linéaire 14, 499–552 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schumacher, K.: Traveling-front solutions for integro-differential equations. I. J. Reine Angew. Math. 316, 54–70 (1980)

    MathSciNet  MATH  Google Scholar 

  38. Sun, Y.J., Li, W.T., Wang, Z.C.: Entire solutions in nonlocal dispersal equations with bistable nonlinearity. J. Differ. Equ. 251, 551–581 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, M., Lv, G.: Entire solutions of a diffusion and competitive Lotka–Volterra type system with nonlocal delayed. Nonlinearity 23, 1609–1630 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, Z.C., Li, W.T., Ruan, S.: Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity. Trans. Am. Math. Soc. 361, 2047–2084 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, Z.C., Li, W.T., Wu, J.: Entire solutions in delayed lattice differential equations with monostable nonlinearity. SIAM J. Math. Anal. 40, 2392–2420 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Weinberger, H.F.: Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  43. Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1941)

    MATH  Google Scholar 

  44. Wu, S.L.: Entire solutions in a bistable reaction-diffusion system modeling man-environment-man epidemics. Nonlinear Anal. Real World Appl. 13, 1991–2005 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu, S.L., Wang, H.Y.: Front-like entire solutions for monostable reaction-diffusion systems. J. Dyn. Differ. Equ. 25, 505–533 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wu, S.L., Sun, Y.J., Liu, S.Y.: Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity. Discret. Contin. Dyn. Syst. 33, 921–946 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xu, D., Zhao, X.Q.: Erratum to Bistable waves in an epidemic model. J. Dyn. Differ. Equ. 17, 219–247 (2005)

    Article  MATH  Google Scholar 

  48. Yagisita, H.: Back and global solutions characterizing annihilation dynamics of traveling fronts. Publ. Res. Inst. Math. Sci. 39, 117–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yu, Z., Yuan, R.: Existence of traveling wave solutions in nonlocal reaction-diffusion systems with delays and applications. ANZIAM. J. 51, 49–66 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yu, Z., Yuan, R.: Existence and asymptotics of traveling waves for nonlocal diffusion systems. Chaos Solitons Fractals 45, 1361–1367 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhao, X.Q., Wang, W.: Fisher waves in an epidemic model. Discret. Contin. Dyn. Syst. 4B, 1117–1128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Wan-Tong Li: Supported by the NSF of China (11271172). Shi-Liang Wu: Supported by the NSF of China (11301407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Tong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, WT. & Wu, SL. Multi-type Entire Solutions in a Nonlocal Dispersal Epidemic Model. J Dyn Diff Equat 28, 189–224 (2016). https://doi.org/10.1007/s10884-014-9416-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9416-8

Keywords

Mathematics Subject Classification

Navigation