Skip to main content
Log in

Planar Limits of Three-Dimensional Incompressible Flows with Helical Symmetry

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Helical symmetry is invariance under a one-dimensional group of rigid motions generated by a simultaneous rotation around a fixed axis and translation along the same axis. The key parameter in helical symmetry is the step or pitch, the magnitude of the translation after rotating one full turn around the symmetry axis. In this article we study the limits of three-dimensional helical viscous and inviscid incompressible flows in an infinite circular pipe, with respectively no-slip and no-penetration boundary conditions, as the step approaches infinity. We show that, as the step becomes large, the three-dimensional helical flow approaches a planar flow, which is governed by the so-called two-and-half Navier–Stokes and Euler equations, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardos, C., Lopes Filho, M.C., Niu, D., Nussenzveig Lopes, H.J., Titi, E.S.: Stability of two-dimensional viscous incompressible flows under three-dimensional perturbations and inviscid symmetry breaking. SIAM J. Math. Anal. 45(3), 1871–1885 (2013). MR 3068562

    Article  MATH  MathSciNet  Google Scholar 

  2. Childress, S., Landman, M., Strauss, H.: Steady motion with helical symmetry at large Reynolds number. Topological Fluid Mechanics, vol. 1990, pp. 216–224. Cambridge University Press, Cambridge (1989). MR 1093923

  3. Constantin, P., Foias, C.: Navier–Stokes Equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (1988). MR 972259 (90b:35190)

    MATH  Google Scholar 

  4. De Lellis, C., Székelyhidi Jr, L.: The Euler equations as a differential inclusion. Ann. Math. (2) 170(3), 1417–1436 (2009). MR 2600877 (2011e:35287)

    Article  MATH  Google Scholar 

  5. Dutrifoy, A.: Existence globale en temps de solutions hélicoïdales des équations d’Euler. C. R. Acad. Sci. Paris Sér. I Math. 329(7), 653–656 (1999). MR 1717127 (2000f:76011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ettinger, B., Titi, E.S.: Global existence and uniqueness of weak solutions of three-dimensional Euler equations with helical symmetry in the absence of vorticity stretching. SIAM J. Math. Anal. 41(1), 269–296 (2009). MR 2505860 (2011c:35445)

    Article  MATH  MathSciNet  Google Scholar 

  7. Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I. Linearized Steady Problems. Springer Tracts in Natural Philosophy, vol. 38. Springer-Verlag, New York (1994). MR 1284205 (95i:35216a)

  8. Iftimie, D., Raugel, G.: Some results on the Navier-Stokes equations in thin 3D domains, J. Differ. Equ. 169(2), 281–331 (2001). Special issue in celebration of Jack K. Hale’s 70th birthday, Part 4 (Atlanta, GA/Lisbon, 1998) MR 1808469 (2001m:35254)

  9. Judovič, V.I.: Non-stationary flows of an ideal incompressible fluid. Z̆ Vyčisl. Mat. i Mat. Fiz. 3, 1032–1066 (1963). MR 0158189 (28 #1415)

  10. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow, 2nd (ed.) English, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, vol. 2, Gordon and Breach Science Publishers, New York (1969). MR 0254401 (40 #7610)

  11. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence, RI (2001). MR 1817225 (2001i:00001)

  12. Mahalov, A., Titi, E.S., Leibovich, S.: Invariant helical subspaces for the Navier–Stokes equations. Arch. Rational Mech. Anal. 112(3), 193–222 (1990). MR 1076072 (91h:35252)

    Article  MATH  MathSciNet  Google Scholar 

  13. Majda, A.: Vorticity and the mathematical theory of incompressible fluid flow. Commun. Pure Appl. Math. 39 no. S, suppl. S187–S220 (1986). Frontiers of the mathematical sciences: 1985 (New York, 1985). MR 861488 (87j:76041)

  14. Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics, vol. 27. Cambridge University Press, Cambridge (2002). MR 1867882(2003a:76002)

  15. Saint, X.: Raymond, Remarks on axisymmetric solutions of the incompressible Euler system. Comm. Partial Differ. Equ. 19(1–2), 321–334 (1994). MR 1257007 (95a:35122)

    Article  MATH  Google Scholar 

  16. Sohr, H.: The Navier–Stokes equations: an elementary functional analytic approach. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, Basel (2001). [Birkhäuser Advanced Texts: Basel Textbooks] MR 1928881 (2004b:35265)

  17. Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton, NJ (1993). With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. MR 1232192 (95c:42002)

  18. Taylor, M.E.: Partial differential equations III. Nonlinear equations. Applied Mathematical Sciences, vol. 117, 2nd edn. Springer, New York (2011)

  19. Temam, R.: Navier–Stokes Equations. AMS Chelsea Publishing, Providence, RI (2001). Theory and numerical analysis, Reprint of the 1984 edition

  20. Wiedemann, E.: Existence of weak solutions for the incompressible Euler equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(5), 727–730 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous referee for a careful reading of the manuscript. M. L. F. and H. N. L. wish to thank the University of California at Riverside, where part of this work was conducted, for their hospitality. M. L. F. is partially supported by Brazil CNPq Grant 303089/2010-5, and CNPq fellowship 200434/2011-0. H. N. L. is partially supported by Brazil CNPq Grant 306331/2010-1, CAPES fellowship 6649/10-6, and FAPERJ Grant E-26/103.197/2012. A. M. would like to thank the Institute of Mathematics at the Federal University in Rio de Janeiro for their hospitality and support. A. M.’s work was partially supported by the US National Science Foundation Grants DMS-1009713, DMS-1009714, and DMS-1312727. D. N.’s work is partially supported by the Chinese National Youth Grant No. 11001184 and the Beijing Natural Science Foundation grants No. 1142004. The work of E. S. T. was supported in part by the Minerva Stiftung/Foundation, and the US National Science Foundation Grants DMS-1009950, DMS-1109640 and DMS-1109645.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna L. Mazzucato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes Filho, M.C., Mazzucato, A.L., Niu, D. et al. Planar Limits of Three-Dimensional Incompressible Flows with Helical Symmetry. J Dyn Diff Equat 26, 843–869 (2014). https://doi.org/10.1007/s10884-014-9411-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9411-0

Keywords

Mathematics Subject Classification

Navigation