Skip to main content
Log in

Existence and Uniqueness of Traveling Wave for Accelerated Frenkel–Kontorova Model

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study the existence and uniqueness of traveling wave solution for the accelerated Frenkel–Kontorova model. This model consists in a system of ODE that describes the motion particles in interaction. The most important applications we have in mind is the motion of crystal defects called dislocations. For this model, we prove the existence of traveling wave solutions under very weak assumptions. The uniqueness of the velocity is also studied as well as the uniqueness of the profile which used different types of strong maximum principle. As far as we know, this is the first result concerning traveling waves for accelerated, spatially discrete system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al Haj, M., Forcadel, N., Monneau, R.: Existence and uniqueness of traveling waves for fully overdamped Frenkel–Kontorova models. Arch. Ration. Mech. Anal. 210(1), 45–99 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zurich, 2nd edn. Birkhauser, Base (2008)

    MATH  Google Scholar 

  3. Aronson, D.G., Weinberger, H.F.: Nonlinear Diffusion in Population Genetics, Combustion, and Nerve Pulse Propagation, Partial Differential Equations and Related Topics. Lecture Notes in Mathematics, vol. 446, pp. 5–49. Springer, Berlin (1975)

    Book  Google Scholar 

  4. Bates, P.W., Chen, X., Chmaj, A.: Traveling waves of bistable dynamics on a lattice. SIAM J. Math. Anal. 35(2), 520–546 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bates, P.W., Fife, P.C., Ren, X., Wang, X.: Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 138(2), 105–136 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55(8), 949–1032 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Berestycki, H., Nicolaenko, B., Scheurer, B.: Traveling wave solutions to combustion models and their singular limits. SIAM J. Math. Anal. 16(6), 1207–1242 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Braun, O.M., Kivshar, Y.S.: The Frenkel–Kontorova Model, Concepts, Methods and Applications. Springer, Berlin (2004)

    MATH  Google Scholar 

  9. Carpio, A., Chapman, S.J., Hastings, S., McLeod, J.B.: Wave solutions for a discrete reaction–diffusion equation. Eur. J. Appl. Math. 11(4), 399–412 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, X.: Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Differ. Equ. 2(1), 125–160 (1997)

    MATH  Google Scholar 

  11. Chen, X., Guo, J.-S., Wu, C.-C.: Traveling waves in discrete periodic media for bistable dynamics. Arch. Ration. Mech. Anal. 189(2), 189–236 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chow, S.-N., Mallet-Paret, J., Shen, W.: Traveling waves in lattice dynamical systems. J. Differ. Equ. 149(2), 248–291 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27, 1–67 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. De Masi, A., Gobron, T., Presutti, E.: Travelling fronts in non-local evolution equations. Arch. Ration. Mech. Anal. 132(2), 143–205 (1995)

    Article  MATH  Google Scholar 

  15. Dunbar, S., Othmer, H.: On a nonlinear hyperbolic equation describing transmission lines, cell movement, and branching random walks, Nonlinear oscillations in biology and chemistry (Salt Lake City, Utah, 1985). Lecture Notes of Biomathematics, vol. 66, pp. 274–289. Springer, Berlin (1986)

    Google Scholar 

  16. Elmer, C.E., Van Vleck, E.S.: A variant of Newton’s method for the computation of traveling waves of bistable differential–difference equations. J. Dynam. Differ. Equ. 14(3), 493–517 (2002)

    Article  MATH  Google Scholar 

  17. Fife, P.C., Mcleod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65(4), 335–361 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fisher, R.A.: The advance of advantageous genes. Ann. Eugenic. 7, 335–369 (1937)

    Google Scholar 

  19. Forcadel, N., Imbert, C., Monneau, R.: Homogenization of fully overdamped Frenkel–Kontorova models. J. Differ. Equ. 246(3), 227–239 (2009)

    Article  MathSciNet  Google Scholar 

  20. Forcadel, N., Imbert, C., Monneau, R.: Homogenization of accelerated Frenkel–Kontorova models with n types of particles. Trans. AMS 364(12), 6187–6227 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gallay, T., Raugel, G.: Scaling variables and stability of hyperbolic fronts. SIAM J. Math. Anal. 32(1), 1–29 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gallay, T., Raugel, G.: Scaling variables and asymptotic expansions in damped wave equations. J. Differ. Equ. 150(1), 42–97 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gallay, T., Raugel, G.: Stability of travelling waves for a damped hyperbolic equation. Z. Angew. Math. Phys. 48(3), 451–479 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Guo, J.-S., Lin, Y.-C.: Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discret. Contin. Dyn. Syst. 32(1), 101–124 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hadeler, K.P.: Hyperbolic travelling fronts. Proc. Edinburgh Math. Soc. (2) 31(1), 89–97 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hankerson, D., Zinner, B.: Wavefronts for a cooperative tridiagonal system of differential equations. J. Dyn. Differ. Equ. 5(2), 359–373 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kanel, J.I.: Certain problems on equations in the theory of burning. Dokl. Akad. Nauk SSSR (Russian) 2, 48–51 (1961); translated as Soviet Math. Dokl. 2, (1961), 48–51

  28. Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. d’Etat à Moscou Ser. Int. Sect. A. 1, 1–25 (1937)

    Google Scholar 

  29. Mallet-Paret, J.: The Fredholm alternative for functional differential equation of mixed type. J. Dyn. Differ Equ. 11(1), 1–47 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mallet-Paret, J.: The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Differ. Equ. 11(1), 49–127 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wu, J., Zou, X.: Asymptotic and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations. J. Differ. Equ. 135(2), 315–357 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zinner, B.: Existence of traveling wavefront solutions for the discrete Nagumo equation. J. Differ. Equ. 96(1), 1–27 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zinner, B., Harris, G., Hudson, W.: Traveling wavefronts for the discrete Fisher’s equation. J. Differ. Equ. 105(1), 46–62 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author was partially supported by ANR AMAM (ANR 10-JCJC 0106), ANR IDEE (ANR-2010-0112-01). This work was partially supported by ANR HJNet (ANR-12-BS01-0008-01) and PHC Utique N30608WB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Forcadel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forcadel, N., Ghorbel, A. & Walha, S. Existence and Uniqueness of Traveling Wave for Accelerated Frenkel–Kontorova Model. J Dyn Diff Equat 26, 1133–1169 (2014). https://doi.org/10.1007/s10884-014-9403-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9403-0

Keywords

Mathematics Subject Classification

Navigation