Oriented Shadowing Property and \(\Omega \)-Stability for Vector Fields



We call that a vector field has the oriented shadowing property if for any \(\varepsilon >0\) there is \(d>0\) such that each \(d\)-pseudo orbit is \(\varepsilon \)-oriented shadowed by some real orbit. In this paper, we show that the \(C^1\)-interior of the set of vector fields with the oriented shadowing property is contained in the set of vector fields with the \(\Omega \)-stability.


Vector fields Oriented shadowing \(\Omega \)-stability 

Mathematics Subject Classification



  1. 1.
    Abdenur, F., Diaz, L.J.: Pseudo-orbit shadowing in the \(C^{1}\) topology. Discret. Contin. Dyn. Syst. 17, 223–245 (2007)MathSciNetMATHGoogle Scholar
  2. 2.
    Arbieto, A., Reis, J.E., Ribeiro, R.: On Various Types of Shadowing for Geometric Lorenz Flows, http://arxiv.org/abs/1306.2061
  3. 3.
    Anosov, D.V.: On a class of invariant sets of smooth dynamical systems. Proc. 5th Int. Conf. Nonlinear Oscil. 2, 39–45 (1970)MATHGoogle Scholar
  4. 4.
    Aoki, N.: The set of Axiom A diffeomorphisms with no cycles. Bol. Soc. Bras. Mat. 23, 21–65 (1992)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975)MATHGoogle Scholar
  6. 6.
    Ding, H.: Disturbance of the homoclinic trajectory and applications. Acta Sci. Nat. Univ. Pekin. 1, 53–63 (1986)MATHGoogle Scholar
  7. 7.
    Gan, S., Wen, L.: Nonsingular star flows satisfy Axiom A and the nocycle condition. Invent. Math. 164, 279–315 (2006)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Guchenheimer, J.: A strange, strange attractor. The Hopf bifurcation theorems and its applications. Applied Mathematical Series. Springer, Berlin (1976)Google Scholar
  9. 9.
    Hayashi, S.: Diffeomorphisms in \({\cal F}^{1}(M)\) satisfy Axiom A. Ergod. Theory Dyn. Syst. 12, 233C253 (1992)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and Its Applications, vol. 54. Cambridge University Press, Cambridge (1995)Google Scholar
  11. 11.
    Kiriki, S., Soma, T.: Parameter-shifted shadowing property for geometric Lorenz attractors. Trans. Am. Math. Soc. 357, 1325–1339 (2005)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Komuro, M.: One-parameter flows with the pseudo orbit tracing property. Monat. Math. 98, 219–253 (1984)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Komuro, M.: Lorenz attractors do not have the pseudo-orbit tracing property. J. Math. Soc. Japan 37, 489–514 (1985)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Lee, K., Sakai, K.: Structural stability of vector fields with shadowing. J. Differ. Equ. 232, 303–313 (2007)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Li, C., Wen, L.: \({\cal X}^{*}\) plus Axiom A does not imply no-cycle. J. Differ. Equ. 119, 395C400 (1995)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Li, M., Gan, S., Wen, L.: Robustly transitive singular sets via approach of an extended linear Poincaré flow. Discret. Contin. Dyn. Syst. 13, 239–269 (2005)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Liao, S.T.: Obstruction sets (II). Acta Sci. Nat. Univ. Pekin. 2, 1–36 (1981)MathSciNetGoogle Scholar
  18. 18.
    Mañé, R.: An ergodic closing lemma. Ann. Math. 116, 503–540 (1982)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Morimoto, A.: The method of pseudo-orbit tracing and stability of dynamical systems. Sem. Note, Tokyo University, vol. 39 (1979)Google Scholar
  20. 20.
    Palmer, K.J.: Shadowing in Dynamical Systems: Theory and Applications. Kluwer, Dordrecht (2000)CrossRefMATHGoogle Scholar
  21. 21.
    Palmer, K.J., Pilyugin, S.Y., Tikhomirov, S.B.: Lipschitz shadowing and structural stability of flows. J. Differ. Equ. 252, 1723–1747 (2012)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Pilyugin, S.Y.: Introduction to Structurally Stable Systems of Differential Equations. Birkhauser-Verlag, Basel (1992)CrossRefMATHGoogle Scholar
  23. 23.
    Pilyugin, S.Y.: Shadowing in Dynamical Systems. Lecture Notes in Math, vol. 1706. Springer, Berlin (1999)Google Scholar
  24. 24.
    Pilyugin, S.Y.: Shadowing in structurally stable flows. J. Differ. Equ. 140(2), 238–265 (1997)CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Pilyugin, S.Y., Rodionova, A.A., Sakai, K.: Orbital and weak shadowing properties. Discret. Contin. Dyn. Syst. 9, 287–308 (2003)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Pilyugin, S.Y., Tikhomirov, S.B.: Sets of vector fields with various shadowing properties of pseudotrajectories. Doklady Math. 422, 30–31 (2008)MathSciNetMATHGoogle Scholar
  27. 27.
    Pilyugin, S.Y., Tikhomirov, S.B.: Vector fields with the oriented shadowing property. J. Differ. Equ. 248, 1345–1375 (2010)CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Pilyugin, S.Y., Tikhomirov, S.B.: Lipschitz shadowing implies structural stability. Nonlinearity 23, 2509–2515 (2010)CrossRefMathSciNetMATHGoogle Scholar
  29. 29.
    Ribeiro, R.: Hyperbolicity and types of shadowing for \(C^1\) generic vector fields. Discret. Contin. Dyn. Syst. 34, 2963–2982 (2014)CrossRefMathSciNetMATHGoogle Scholar
  30. 30.
    Robinson, C.: Stability theorems and hyperbolicity in dynamical systems. Rocky Mt. J. Math. 7, 425–437 (1977)CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    Sakai, K.: Pseudo orbit tracing property and strong transversality of diffeomorphisms on closed manifolds. Osaka J. Math. 31, 373–386 (1994)MathSciNetMATHGoogle Scholar
  32. 32.
    Sawada, K.: Extended \(f\)-orbits are approximated by orbits. Nagoya Math. J. 79, 33–45 (1980)MathSciNetMATHGoogle Scholar
  33. 33.
    Shilnikov, L. P., Shilnikov, A. L., Taruve, D. V., Chua, L. O.: Methods of qualitative theory in nonlinear dynamics. World Scientific Series A, vol. 5Google Scholar
  34. 34.
    Thomas, R.F.: Stability properties of one-parameter flows. Proc. Lond. Math. Soc. 54, 479–505 (1982)CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    Tikhomirov, S.B.: Interiors of sets of vector fields with shadowing properties that correspond to some classes of reparametrizations. Vestnik St. Petersburg Univ. Math. 41(4), 360–366 (2008)CrossRefMathSciNetMATHGoogle Scholar
  36. 36.
    Tikhomirov, S.: An example of a vector field with the oriented shadowing property. http://arxiv.org/abs/1403.7378
  37. 37.
    Wen, L.: A uniform \(C^1\) connecting lemma. Discret. Contin. Dyn. Syst. 8, 257–265 (2002)CrossRefMathSciNetMATHGoogle Scholar
  38. 38.
    Wen, L., Xia, Z.: \(C^1\) connecting lemmas. Trans. Am. Math. Soc. 352, 5213–5230 (2000)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.LMAM and School of Mathematical SciencesPeking UniversityBeijingPeople’s republic of China
  2. 2.School of Mathematical Sciences and LPMCNankai UniversityTianjinPeople’s Republic of China
  3. 3.Max Planck Institute for Mathematics in the SciencesLeipzigGermany
  4. 4.Chebyshev LaboratorySaint-Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations