Skip to main content
Log in

Oriented Shadowing Property and \(\Omega \)-Stability for Vector Fields

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We call that a vector field has the oriented shadowing property if for any \(\varepsilon >0\) there is \(d>0\) such that each \(d\)-pseudo orbit is \(\varepsilon \)-oriented shadowed by some real orbit. In this paper, we show that the \(C^1\)-interior of the set of vector fields with the oriented shadowing property is contained in the set of vector fields with the \(\Omega \)-stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdenur, F., Diaz, L.J.: Pseudo-orbit shadowing in the \(C^{1}\) topology. Discret. Contin. Dyn. Syst. 17, 223–245 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Arbieto, A., Reis, J.E., Ribeiro, R.: On Various Types of Shadowing for Geometric Lorenz Flows, http://arxiv.org/abs/1306.2061

  3. Anosov, D.V.: On a class of invariant sets of smooth dynamical systems. Proc. 5th Int. Conf. Nonlinear Oscil. 2, 39–45 (1970)

    MATH  Google Scholar 

  4. Aoki, N.: The set of Axiom A diffeomorphisms with no cycles. Bol. Soc. Bras. Mat. 23, 21–65 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975)

    MATH  Google Scholar 

  6. Ding, H.: Disturbance of the homoclinic trajectory and applications. Acta Sci. Nat. Univ. Pekin. 1, 53–63 (1986)

    MATH  Google Scholar 

  7. Gan, S., Wen, L.: Nonsingular star flows satisfy Axiom A and the nocycle condition. Invent. Math. 164, 279–315 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guchenheimer, J.: A strange, strange attractor. The Hopf bifurcation theorems and its applications. Applied Mathematical Series. Springer, Berlin (1976)

    Google Scholar 

  9. Hayashi, S.: Diffeomorphisms in \({\cal F}^{1}(M)\) satisfy Axiom A. Ergod. Theory Dyn. Syst. 12, 233C253 (1992)

    Article  MathSciNet  Google Scholar 

  10. Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and Its Applications, vol. 54. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  11. Kiriki, S., Soma, T.: Parameter-shifted shadowing property for geometric Lorenz attractors. Trans. Am. Math. Soc. 357, 1325–1339 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Komuro, M.: One-parameter flows with the pseudo orbit tracing property. Monat. Math. 98, 219–253 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Komuro, M.: Lorenz attractors do not have the pseudo-orbit tracing property. J. Math. Soc. Japan 37, 489–514 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee, K., Sakai, K.: Structural stability of vector fields with shadowing. J. Differ. Equ. 232, 303–313 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, C., Wen, L.: \({\cal X}^{*}\) plus Axiom A does not imply no-cycle. J. Differ. Equ. 119, 395C400 (1995)

    Article  MathSciNet  Google Scholar 

  16. Li, M., Gan, S., Wen, L.: Robustly transitive singular sets via approach of an extended linear Poincaré flow. Discret. Contin. Dyn. Syst. 13, 239–269 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liao, S.T.: Obstruction sets (II). Acta Sci. Nat. Univ. Pekin. 2, 1–36 (1981)

    MathSciNet  Google Scholar 

  18. Mañé, R.: An ergodic closing lemma. Ann. Math. 116, 503–540 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Morimoto, A.: The method of pseudo-orbit tracing and stability of dynamical systems. Sem. Note, Tokyo University, vol. 39 (1979)

  20. Palmer, K.J.: Shadowing in Dynamical Systems: Theory and Applications. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  21. Palmer, K.J., Pilyugin, S.Y., Tikhomirov, S.B.: Lipschitz shadowing and structural stability of flows. J. Differ. Equ. 252, 1723–1747 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pilyugin, S.Y.: Introduction to Structurally Stable Systems of Differential Equations. Birkhauser-Verlag, Basel (1992)

    Book  MATH  Google Scholar 

  23. Pilyugin, S.Y.: Shadowing in Dynamical Systems. Lecture Notes in Math, vol. 1706. Springer, Berlin (1999)

  24. Pilyugin, S.Y.: Shadowing in structurally stable flows. J. Differ. Equ. 140(2), 238–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pilyugin, S.Y., Rodionova, A.A., Sakai, K.: Orbital and weak shadowing properties. Discret. Contin. Dyn. Syst. 9, 287–308 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pilyugin, S.Y., Tikhomirov, S.B.: Sets of vector fields with various shadowing properties of pseudotrajectories. Doklady Math. 422, 30–31 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Pilyugin, S.Y., Tikhomirov, S.B.: Vector fields with the oriented shadowing property. J. Differ. Equ. 248, 1345–1375 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pilyugin, S.Y., Tikhomirov, S.B.: Lipschitz shadowing implies structural stability. Nonlinearity 23, 2509–2515 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ribeiro, R.: Hyperbolicity and types of shadowing for \(C^1\) generic vector fields. Discret. Contin. Dyn. Syst. 34, 2963–2982 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Robinson, C.: Stability theorems and hyperbolicity in dynamical systems. Rocky Mt. J. Math. 7, 425–437 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sakai, K.: Pseudo orbit tracing property and strong transversality of diffeomorphisms on closed manifolds. Osaka J. Math. 31, 373–386 (1994)

    MathSciNet  MATH  Google Scholar 

  32. Sawada, K.: Extended \(f\)-orbits are approximated by orbits. Nagoya Math. J. 79, 33–45 (1980)

    MathSciNet  MATH  Google Scholar 

  33. Shilnikov, L. P., Shilnikov, A. L., Taruve, D. V., Chua, L. O.: Methods of qualitative theory in nonlinear dynamics. World Scientific Series A, vol. 5

  34. Thomas, R.F.: Stability properties of one-parameter flows. Proc. Lond. Math. Soc. 54, 479–505 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tikhomirov, S.B.: Interiors of sets of vector fields with shadowing properties that correspond to some classes of reparametrizations. Vestnik St. Petersburg Univ. Math. 41(4), 360–366 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tikhomirov, S.: An example of a vector field with the oriented shadowing property. http://arxiv.org/abs/1403.7378

  37. Wen, L.: A uniform \(C^1\) connecting lemma. Discret. Contin. Dyn. Syst. 8, 257–265 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wen, L., Xia, Z.: \(C^1\) connecting lemmas. Trans. Am. Math. Soc. 352, 5213–5230 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Shaobo Gan is supported by 973 project 2011CB808002, NSFC 11025101 and 11231001. Ming Li is partially supported by the National Science Foundation of China (Grant No. 11201244), the Specialized Research Fund for the Doctoral Program of Higher Education of China (SRFDP, Grant No. 20120031120024), and the LPMC of Nankai University. Sergey Tikhomirov is partially supported by Chebyshev Laboratory (Department of Mathematics and Mechanics, St. Petersburg State University) under RF Government grant 11.G34.31.0026, JSC “Gazprom neft”, by the Saint-Petersburg State University research grant 6.38.223.2014 and by the German-Russian Interdisciplinary Science Center (G-RISC) funded by the German Federal Foreign Office via the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, S., Li, M. & Tikhomirov, S.B. Oriented Shadowing Property and \(\Omega \)-Stability for Vector Fields. J Dyn Diff Equat 28, 225–237 (2016). https://doi.org/10.1007/s10884-014-9399-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9399-5

Keywords

Mathematics Subject Classification

Navigation