Skip to main content
Log in

Pattern Formation in Turing Systems on Domains with Exponentially Growing Structures

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Turing reaction–diffusion systems have been used to model pattern formation in several areas of developmental biology. Previous biomathematical Turing system models employed static domains which failed to incorporate the growth that inherently occurs as an organism develops. To address this shortcoming, we incorporate an exponentially growing domain into a Turing system, allowing one to more realistically model biological pattern formation. This Turing system can generate patterns on an exponentially growing domain in any of the eleven coordinate systems in which the Helmholtz equation is separable, making the system incredibly flexible and giving one the capability to mathematically model pattern formation on a geometrically diverse group of domains. Linear stability analysis is employed to generate mathematical conditions which ensure such a system can generate patterns. We apply the exponentially growing Turing system to a prolate spheroidal domain and conduct numerical simulations to investigate the system’s pattern-generating behavior. We find that the addition of growth to a Turing system causes a significant change in the pattern-generating behavior of the system. While a static domain Turing system converges to a final pattern, an exponentially growing domain Turing system produces transient patterns that continually evolve and increase in complexity over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barrio, R.: Turing systems: a general model for complex patterns in nature. Electron J. Theor. Phys. 4(15), 1–26 (2007)

    Google Scholar 

  2. Barrio, R., Baker, R., Vaughan, B., Tribuzy, K., de Carvalho, M., Bassanezi, R., Maini, P.: Modeling the skin pattern of fishes. Phys. Rev. E 79(3), 031,908–1–031,908–11 (2009)

    Article  Google Scholar 

  3. Barrio, R., Varea, C., Aragon, J., Maini, P.: A two-dimensional numerical study of spatial pattern formation in interacting turing systems. B Math. Biol. 61(3), 483–505 (1999)

    Article  Google Scholar 

  4. Ermentrout, B.: Stripes or spots? Nonlinear effects in bifurcation of reaction–diffusion equations on the square. Proc. R. Soc. Lond. A Math. 434(1891), 413–417 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Flammer, K.: Spheroidal Wave Functions. Stanford University Press, Palo Alto (1957)

    MATH  Google Scholar 

  6. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Article  Google Scholar 

  7. Gjorgjieva, J., Jacobsen, J.: Turing patterns on growing spheres: the exponential case. Discrete Cont. Dyn. Syst. Suppl. 2007, 436–445 (2007)

    MATH  MathSciNet  Google Scholar 

  8. Leppänen, T.: Computational studies of pattern formation in turing systems. Ph.D. thesis, Helsinki University of Technology (2004)

  9. Leppänen, T., Karttunen, M., Barrio, R., Kaski, K.: Morphological transitions and bistability in turing systems. Phys. Rev. E. 70, 066,202 (2004). doi:10.1103/PhysRevE.70.066202

    Article  Google Scholar 

  10. Morton, K., Mayers, D.: Numerical Solution of Partial Differential Equations: an Introduction, 2nd edn. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  11. Murray, J.: Mathematical Biology II, 3rd edn. Springer, New York (2003)

    Google Scholar 

  12. Plaza, R., Sanchez-Garduno, F., Padilla, P., Barrio, R., Maini, P.: The effect of growth and curvature on pattern formation. J. Dyn. Differ. Equ. 16(4), 1093–1121 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sick, S., Reinker, S., Timmer, J., Schlake, T.: Hair follicle spacing through a reaction-diffusion mechanism. Science 314, 1447–1450 (2006)

    Article  Google Scholar 

  14. Striegel, D., Hurdal, M.: Chemically based mathematical model for development of cerebral cortical folding patterns. PLoS Comput. Biol. 5(9), e1000,524 (2009)

    Article  MathSciNet  Google Scholar 

  15. Turing, A.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237, 37–72 (1952)

    Article  Google Scholar 

  16. Varea, C., Hernandez, D., Barrio, R.: Soliton behaviour in a bistable reaction diffusion model. J. Math. Biol. 54, 797–813 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Venkataraman, C., Sekimura, T., Gaffney, E., Maini, P., Madzvamuse, A.: Modeling parr-mark pattern formation during the early development of Amago trout. Phys. Rev. E. 84, 041,923 (2011). doi:10.1103/PhysRevE.84.041923

    Article  Google Scholar 

  18. Zwillinger, D.: Handbook of Differential Equations. Academic Press, San Diego (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica K. Hurdal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toole, G., Hurdal, M.K. Pattern Formation in Turing Systems on Domains with Exponentially Growing Structures. J Dyn Diff Equat 26, 315–332 (2014). https://doi.org/10.1007/s10884-014-9365-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9365-2

Keywords

Mathematics Subject Classification

Navigation