Steady Bifurcating Solutions of the Couette–Taylor Problem for Flow in a Deformable Cylinder

  • David Bourne
  • Stuart S. AntmanEmail author


The classical Couette–Taylor problem is to describe the motion of a viscous incompressible fluid in the region between two rigid coaxial cylinders, which rotate at constant angular velocities. This paper treats a generalization of this problem in which the rigid outer cylinder is replaced by a deformable (nonlinearly elastic) cylinder. The inner cylinder is rigid and rotates at a prescribed angular velocity. We study steady rotationally symmetric motions of the fluid coupled with steady axisymmetric motions of the deformable outer cylinder in which it rotates at a prescribed constant angular velocity, typically different from that of the inner cylinder. The motion of the outer cylinder is governed by a geometrically exact theory of shells and the motion of the liquid by the Navier–Stokes equations, with the domain occupied by the liquid depending on the deformation of the outer cylinder. The nonlinear fluid-solid system admits a (trivial) steady solution, termed the Couette solution, which can be found explicitly. This paper treats the global (multiparameter) bifurcation of steady-state solutions from the Couette solution. This problem exhibits technical mathematical difficulties directly due to the fluid-solid interaction: The smoothness of the shell’s configuration restricts the smoothness of the fluid variables, and their boundary values on the shell determine the smoothness of the shell’s configuration. It is essential to ensure that this cycle of implications is consistent.


Fluid-solid interaction Navier–Stokes equations Bifurcation  Nonlinear elasticity Couette–Taylor problem 



The research reported here was supported in part by grants from the NSF. This work represents a considerable extension of Chapter 5 of Bourne [10]. Some of the work of Bourne was carried out at the Max Planck Institute for Mathematics in the Sciences in Leipzig, the University of Bonn, the Eindhoven University of Technology, and the University of Glasgow. We are grateful to James C. Alexander for helpful comments.


  1. 1.
    Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)zbMATHGoogle Scholar
  2. 2.
    Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Commun. Pure Appl. Math. 12, 623–727 (1959)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Alexander, J.C.: A primer on connectivity. In: Fadell, E., Fournier, G. (eds.) Fixed Point Theory, pp. 455–483. Springer, Berlin (1981)CrossRefGoogle Scholar
  4. 4.
    Alexander, J.C., Antman, S.S.: Global and local behavior of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems. Arch. Rational Mech. Anal. 76, 339–354 (1981)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Alexander, J.C., Yorke, J.A.: The implicit function theorem and global methods of cohomology. J. Funct. Anal. 21, 330–339 (1976)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer, New York (2005)zbMATHGoogle Scholar
  7. 7.
    Antman, S.S., Bourne, D.: Rotational symmetry vs. axisymmetry in shell theory. Int. J. Eng. Sci. 48, 991–1005 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Antman, S.S., Lanza de Cristoforis, M.: Nonlinear, nonlocal problems of fluid-solid interactions. In: Ni, W.-M., Peletier, L.A., Vazquez, J.L. (eds.) Degenerate Diffusion, pp. 1–18. Springer, New York (1993)CrossRefGoogle Scholar
  9. 9.
    Beirão da Veiga, H.: On the existence of strong solutions to a coupled fluid-structure evolution problem. J. Math. Fluid Mech. 6, 21–52 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Bourne, D.: The Taylor–Couette problem for flow in a deformable cylinder, dissertation. Univ, Maryland (2007)Google Scholar
  11. 11.
    Bourne, D., Antman, S.S.: A non-self-adjoint quadratic eigenvalue problem describing a fluid-solid interaction Part I: formulation, analysis, and computations. Commun. Pure Appl. Anal. 8, 123–142 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Bourne, D., Elman, H., Osborn, J.E.: A non-self-adjoint quadratic eigenvalue problem describing a fluid-solid interaction Part II: analysis of convergence. Commun. Pure Appl. Anal. 8, 143–160 (2009)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Navier–Stokes Equations. Springer, New York (2013)zbMATHGoogle Scholar
  14. 14.
    Chambolle, A., Desjardins, B., Esteban, M.J., Grandmont, C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7, 368–404 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, Oxford (1961)zbMATHGoogle Scholar
  16. 16.
    Chossat, P., Iooss, G.: The Couette–Taylor Problem. Springer, New York (1994)CrossRefzbMATHGoogle Scholar
  17. 17.
    Cliffe, K.A., Mullin, T., Schaeffer, D.: The onset of steady vortices isn Taylor–Couette flow: the role of approximate symmetry. Phys. Fluids 24, 064102-1–064102-18 (2012)Google Scholar
  18. 18.
    Constantin, P., Foias, C.: Navier–Stokes Equations. University of Chicago Press, Chicago (1988)zbMATHGoogle Scholar
  19. 19.
    Couette, M.: Études sur le frottement des liquides. Ann. Chim. Phys. 21, 433–510 (1890)zbMATHGoogle Scholar
  20. 20.
    Coleman, B.D., Markovitz, N., Noll, W.: Viscometric Flows of Non-Newtonian Fluids. Springer, New York (1966)CrossRefzbMATHGoogle Scholar
  21. 21.
    Coutand, D., Shkoller, S.: Motion of an elastic solid inside an incompressible viscous fluid. Arch. Rational Mech. Anal. 176, 25–102 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Coutand, D., Shkoller, S.: The interaction between quasilinear elastodynamics and the Navier–Stokes equations. Arch. Rational Mech. Anal. 179, 303–352 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Drazin, P.G., Reid, W.H.: Hydrodynamic Stability, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  25. 25.
    Fabes, E.B., Kenig, C.E., Verchota, G.C.: The Dirichlet problem for the Stokes flow system on Lipschitz domains. Duke Math. J. 57, 769–793 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Fitzpatrick, P.M., Massabò, I., Pejsachowicz, J.: Global several parameter bifurcation and continuation theorems. Math. Ann. 263, 61–73 (1985)CrossRefzbMATHGoogle Scholar
  27. 27.
    Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems, 2nd edn. Springer, New York (2011)zbMATHGoogle Scholar
  28. 28.
    Galdi, G.P., Kyed, M.: Steady flow of a Navier–Stokes liquid past an elastic body. Arch. Rational Mech. Anal. 194, 849–875 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Galdi, G.P., Rannacher, R.: Fundamental Trends in Fluid-Structure Interaction. World Scientific, Singapore (2010)CrossRefGoogle Scholar
  30. 30.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, New York (1983)CrossRefzbMATHGoogle Scholar
  31. 31.
    Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Springer, New York (1986)Google Scholar
  32. 32.
    Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. II. Springer, New York (1988)CrossRefzbMATHGoogle Scholar
  33. 33.
    Grandmont, C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. SIAM J. Math. Anal. 40, 716–737 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Guidorzi, M., Padula, M., Plotnikov, P.I.: Hopf solutions to a fluid-elastic interaction model. Math. Models Methods Appl. Sci. 18, 215–269 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Ize, J.: Topological bifurcation. In: Matzeu, M., Vignoli, A. (eds.) Topological Analysis, pp. 341–463. Birkhäuser, Boston (1995)CrossRefGoogle Scholar
  36. 36.
    Ize, J., Massabò, I., Pejsachowicz, J., Vignoli, A.: Structure and dimension of global branches of solutions to multiparameter nonlinear equations. Trans. Amer. Math. Soc. 291, 383–435 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Joseph, D.D.: Domain perturbations: the higher order theory of infinitesimal water waves. Arch. Rational Mech. Anal. 51, 295–303 (1973)CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Joseph, D.D.: Stability of Fluid Motions, vol. I. Springer, New York (1976)zbMATHGoogle Scholar
  39. 39.
    Kirchgässner, K.: Bifurcation in nonlinear hydrodynamic stability. SIAM Rev. 17, 652–683 (1975)CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Kirchgässner, K., Kielhöfer, H.: Stability and bifurcation in fluid dynamics. Rocky Mt. J. Math. 3, 275–318 (1973)CrossRefMathSciNetzbMATHGoogle Scholar
  41. 41.
    Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1963)zbMATHGoogle Scholar
  42. 42.
    Lichtenstein, L.: Grundlagen der Hydromechanik. Springer, Berlin (1929)Google Scholar
  43. 43.
    Lin, C.C.: The Theory of Hydrodynamic Stability. Cambridge University Press, Cambridge (1955)zbMATHGoogle Scholar
  44. 44.
    Mitrea, M., Wright, M.: Boundary Value Problems for the Stokes System in Arbitrary Lipschitz Domains, Astérisque, vol. 77. SMF, Paris (2012)Google Scholar
  45. 45.
    Odqvist, F.K.G.: Über die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten. Math. Z. 32, 329–375 (1930)CrossRefMathSciNetzbMATHGoogle Scholar
  46. 46.
    Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)CrossRefMathSciNetzbMATHGoogle Scholar
  47. 47.
    Rabinowitz, P.H.: Théorie du Degré Topologique et Applications a des Problémes aux Limites Non Linéaires, Lecture Notes, vol. VI. University of Paris, Paris (1975)Google Scholar
  48. 48.
    Rouche, N., Mawhin, J.: Ordinary Differential Equations. Pitman, Boston (1980)zbMATHGoogle Scholar
  49. 49.
    Russo, R.: On the existence of solutions to the steady Navier–Stokes equations. Ric. Mat. 52, 285–348 (2003)zbMATHGoogle Scholar
  50. 50.
    Sohr, H.: The Navier–Stokes Equations. Birkhäuser, Boston (2001)CrossRefzbMATHGoogle Scholar
  51. 51.
    Stakgold, I.: Boundary Value Problems of Mathematical Physics, vol. II. MacMillan, New York (1968)zbMATHGoogle Scholar
  52. 52.
    Stakgold, I.: Green’s Functions and Boundary Value Problems, 2nd edn. Wiley, New York (1998)zbMATHGoogle Scholar
  53. 53.
    Stoker, J.J.: Water Waves. Wiley, New York (1957)zbMATHGoogle Scholar
  54. 54.
    Stupelis, L.: Navier–Stokes Equations in Irregular Domains. Kluwer, Boston (1995)CrossRefzbMATHGoogle Scholar
  55. 55.
    Tagg, R.: A guide to literature related to the Taylor–Couette problem. In: Andereck, C.D., Hayot, F. (eds.) Ordered and Turbulent Patterns in Taylor–Couette Flow, pp. 303–354. Plenum, New York (1992)CrossRefGoogle Scholar
  56. 56.
    Taylor, G.I.: Stability of a viscous fluid contained between two rotating cylinders. Phil. Trans. Roy. Soc. London Ser. A 223, 289–343 (1923)CrossRefzbMATHGoogle Scholar
  57. 57.
    Temam, R.: Navier–Stokes Equations, 3rd edn. AMS Chelsea, Boston (2001)zbMATHGoogle Scholar
  58. 58.
    Velte, W.: Stabilität und Verzweigung stationärer Lösungen der Navier–Stokesschen Gleichungen. Arch. Rational Mech. Anal. 22, 1–14 (1966)CrossRefMathSciNetzbMATHGoogle Scholar
  59. 59.
    Wehausen, J.V., Laitone, E.V.: Surface Waves, in Handbuch der Physik, vol. IX. Springer, New York (1960)Google Scholar
  60. 60.
    Zeidler, E.: Nonlinear Functional Analysis and its Applications, vol. IV. Springer, New York (1997)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of GlasgowGlasgow UK
  2. 2.Department of Mathematics, Institute for Physical Science and Technology, and Institute for Systems ResearchUniversity of MarylandCollege ParkUSA

Personalised recommendations