Advertisement

Journal of Dynamics and Differential Equations

, Volume 27, Issue 3–4, pp 457–483

# Steady Bifurcating Solutions of the Couette–Taylor Problem for Flow in a Deformable Cylinder

• David Bourne
• Stuart S. Antman
Article
• 185 Downloads

## Abstract

The classical Couette–Taylor problem is to describe the motion of a viscous incompressible fluid in the region between two rigid coaxial cylinders, which rotate at constant angular velocities. This paper treats a generalization of this problem in which the rigid outer cylinder is replaced by a deformable (nonlinearly elastic) cylinder. The inner cylinder is rigid and rotates at a prescribed angular velocity. We study steady rotationally symmetric motions of the fluid coupled with steady axisymmetric motions of the deformable outer cylinder in which it rotates at a prescribed constant angular velocity, typically different from that of the inner cylinder. The motion of the outer cylinder is governed by a geometrically exact theory of shells and the motion of the liquid by the Navier–Stokes equations, with the domain occupied by the liquid depending on the deformation of the outer cylinder. The nonlinear fluid-solid system admits a (trivial) steady solution, termed the Couette solution, which can be found explicitly. This paper treats the global (multiparameter) bifurcation of steady-state solutions from the Couette solution. This problem exhibits technical mathematical difficulties directly due to the fluid-solid interaction: The smoothness of the shell’s configuration restricts the smoothness of the fluid variables, and their boundary values on the shell determine the smoothness of the shell’s configuration. It is essential to ensure that this cycle of implications is consistent.

## Keywords

Fluid-solid interaction Navier–Stokes equations Bifurcation  Nonlinear elasticity Couette–Taylor problem

## Notes

### Acknowledgments

The research reported here was supported in part by grants from the NSF. This work represents a considerable extension of Chapter 5 of Bourne [10]. Some of the work of Bourne was carried out at the Max Planck Institute for Mathematics in the Sciences in Leipzig, the University of Bonn, the Eindhoven University of Technology, and the University of Glasgow. We are grateful to James C. Alexander for helpful comments.

## References

1. 1.
Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
2. 2.
Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Commun. Pure Appl. Math. 12, 623–727 (1959)
3. 3.
Alexander, J.C.: A primer on connectivity. In: Fadell, E., Fournier, G. (eds.) Fixed Point Theory, pp. 455–483. Springer, Berlin (1981)
4. 4.
Alexander, J.C., Antman, S.S.: Global and local behavior of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems. Arch. Rational Mech. Anal. 76, 339–354 (1981)
5. 5.
Alexander, J.C., Yorke, J.A.: The implicit function theorem and global methods of cohomology. J. Funct. Anal. 21, 330–339 (1976)
6. 6.
Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer, New York (2005)
7. 7.
Antman, S.S., Bourne, D.: Rotational symmetry vs. axisymmetry in shell theory. Int. J. Eng. Sci. 48, 991–1005 (2010)
8. 8.
Antman, S.S., Lanza de Cristoforis, M.: Nonlinear, nonlocal problems of fluid-solid interactions. In: Ni, W.-M., Peletier, L.A., Vazquez, J.L. (eds.) Degenerate Diffusion, pp. 1–18. Springer, New York (1993)
9. 9.
Beirão da Veiga, H.: On the existence of strong solutions to a coupled fluid-structure evolution problem. J. Math. Fluid Mech. 6, 21–52 (2004)
10. 10.
Bourne, D.: The Taylor–Couette problem for flow in a deformable cylinder, dissertation. Univ, Maryland (2007)Google Scholar
11. 11.
Bourne, D., Antman, S.S.: A non-self-adjoint quadratic eigenvalue problem describing a fluid-solid interaction Part I: formulation, analysis, and computations. Commun. Pure Appl. Anal. 8, 123–142 (2009)
12. 12.
Bourne, D., Elman, H., Osborn, J.E.: A non-self-adjoint quadratic eigenvalue problem describing a fluid-solid interaction Part II: analysis of convergence. Commun. Pure Appl. Anal. 8, 143–160 (2009)
13. 13.
Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Navier–Stokes Equations. Springer, New York (2013)
14. 14.
Chambolle, A., Desjardins, B., Esteban, M.J., Grandmont, C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7, 368–404 (2005)
15. 15.
Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, Oxford (1961)
16. 16.
Chossat, P., Iooss, G.: The Couette–Taylor Problem. Springer, New York (1994)
17. 17.
Cliffe, K.A., Mullin, T., Schaeffer, D.: The onset of steady vortices isn Taylor–Couette flow: the role of approximate symmetry. Phys. Fluids 24, 064102-1–064102-18 (2012)Google Scholar
18. 18.
Constantin, P., Foias, C.: Navier–Stokes Equations. University of Chicago Press, Chicago (1988)
19. 19.
Couette, M.: Études sur le frottement des liquides. Ann. Chim. Phys. 21, 433–510 (1890)
20. 20.
Coleman, B.D., Markovitz, N., Noll, W.: Viscometric Flows of Non-Newtonian Fluids. Springer, New York (1966)
21. 21.
Coutand, D., Shkoller, S.: Motion of an elastic solid inside an incompressible viscous fluid. Arch. Rational Mech. Anal. 176, 25–102 (2005)
22. 22.
Coutand, D., Shkoller, S.: The interaction between quasilinear elastodynamics and the Navier–Stokes equations. Arch. Rational Mech. Anal. 179, 303–352 (2006)
23. 23.
Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)
24. 24.
Drazin, P.G., Reid, W.H.: Hydrodynamic Stability, 2nd edn. Cambridge University Press, Cambridge (2004)
25. 25.
Fabes, E.B., Kenig, C.E., Verchota, G.C.: The Dirichlet problem for the Stokes flow system on Lipschitz domains. Duke Math. J. 57, 769–793 (1988)
26. 26.
Fitzpatrick, P.M., Massabò, I., Pejsachowicz, J.: Global several parameter bifurcation and continuation theorems. Math. Ann. 263, 61–73 (1985)
27. 27.
Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems, 2nd edn. Springer, New York (2011)
28. 28.
Galdi, G.P., Kyed, M.: Steady flow of a Navier–Stokes liquid past an elastic body. Arch. Rational Mech. Anal. 194, 849–875 (2009)
29. 29.
Galdi, G.P., Rannacher, R.: Fundamental Trends in Fluid-Structure Interaction. World Scientific, Singapore (2010)
30. 30.
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, New York (1983)
31. 31.
Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Springer, New York (1986)Google Scholar
32. 32.
Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. II. Springer, New York (1988)
33. 33.
Grandmont, C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. SIAM J. Math. Anal. 40, 716–737 (2008)
34. 34.
Guidorzi, M., Padula, M., Plotnikov, P.I.: Hopf solutions to a fluid-elastic interaction model. Math. Models Methods Appl. Sci. 18, 215–269 (2008)
35. 35.
Ize, J.: Topological bifurcation. In: Matzeu, M., Vignoli, A. (eds.) Topological Analysis, pp. 341–463. Birkhäuser, Boston (1995)
36. 36.
Ize, J., Massabò, I., Pejsachowicz, J., Vignoli, A.: Structure and dimension of global branches of solutions to multiparameter nonlinear equations. Trans. Amer. Math. Soc. 291, 383–435 (1985)
37. 37.
Joseph, D.D.: Domain perturbations: the higher order theory of infinitesimal water waves. Arch. Rational Mech. Anal. 51, 295–303 (1973)
38. 38.
Joseph, D.D.: Stability of Fluid Motions, vol. I. Springer, New York (1976)
39. 39.
Kirchgässner, K.: Bifurcation in nonlinear hydrodynamic stability. SIAM Rev. 17, 652–683 (1975)
40. 40.
Kirchgässner, K., Kielhöfer, H.: Stability and bifurcation in fluid dynamics. Rocky Mt. J. Math. 3, 275–318 (1973)
41. 41.
Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1963)
42. 42.
Lichtenstein, L.: Grundlagen der Hydromechanik. Springer, Berlin (1929)Google Scholar
43. 43.
Lin, C.C.: The Theory of Hydrodynamic Stability. Cambridge University Press, Cambridge (1955)
44. 44.
Mitrea, M., Wright, M.: Boundary Value Problems for the Stokes System in Arbitrary Lipschitz Domains, Astérisque, vol. 77. SMF, Paris (2012)Google Scholar
45. 45.
Odqvist, F.K.G.: Über die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten. Math. Z. 32, 329–375 (1930)
46. 46.
Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)
47. 47.
Rabinowitz, P.H.: Théorie du Degré Topologique et Applications a des Problémes aux Limites Non Linéaires, Lecture Notes, vol. VI. University of Paris, Paris (1975)Google Scholar
48. 48.
Rouche, N., Mawhin, J.: Ordinary Differential Equations. Pitman, Boston (1980)
49. 49.
Russo, R.: On the existence of solutions to the steady Navier–Stokes equations. Ric. Mat. 52, 285–348 (2003)
50. 50.
Sohr, H.: The Navier–Stokes Equations. Birkhäuser, Boston (2001)
51. 51.
Stakgold, I.: Boundary Value Problems of Mathematical Physics, vol. II. MacMillan, New York (1968)
52. 52.
Stakgold, I.: Green’s Functions and Boundary Value Problems, 2nd edn. Wiley, New York (1998)
53. 53.
Stoker, J.J.: Water Waves. Wiley, New York (1957)
54. 54.
Stupelis, L.: Navier–Stokes Equations in Irregular Domains. Kluwer, Boston (1995)
55. 55.
Tagg, R.: A guide to literature related to the Taylor–Couette problem. In: Andereck, C.D., Hayot, F. (eds.) Ordered and Turbulent Patterns in Taylor–Couette Flow, pp. 303–354. Plenum, New York (1992)
56. 56.
Taylor, G.I.: Stability of a viscous fluid contained between two rotating cylinders. Phil. Trans. Roy. Soc. London Ser. A 223, 289–343 (1923)
57. 57.
Temam, R.: Navier–Stokes Equations, 3rd edn. AMS Chelsea, Boston (2001)
58. 58.
Velte, W.: Stabilität und Verzweigung stationärer Lösungen der Navier–Stokesschen Gleichungen. Arch. Rational Mech. Anal. 22, 1–14 (1966)
59. 59.
Wehausen, J.V., Laitone, E.V.: Surface Waves, in Handbuch der Physik, vol. IX. Springer, New York (1960)Google Scholar
60. 60.
Zeidler, E.: Nonlinear Functional Analysis and its Applications, vol. IV. Springer, New York (1997)Google Scholar

## Copyright information

© Springer Science+Business Media New York 2014

## Authors and Affiliations

1. 1.School of Mathematics and StatisticsUniversity of GlasgowGlasgow UK
2. 2.Department of Mathematics, Institute for Physical Science and Technology, and Institute for Systems ResearchUniversity of MarylandCollege ParkUSA