The Linear Stability of Shock Waves for the Nonlinear Schrödinger–Inviscid Burgers System

Abstract

We investigate the coupling between the nonlinear Schrödinger equation and the inviscid Burgers equation, a system which models interactions between short and long waves, for instance in fluids. Well-posedness for the associated Cauchy problem remains a difficult open problem, and we tackle it here via a linearization technique. Namely, we establish a linearized stability theorem for the Schrödinger–Burgers system, when the reference solution is an entropy-satisfying shock wave to Burgers equation. Our proof is based on suitable energy estimates and on properties of hyperbolic equations with discontinuous coefficients. Numerical experiments support and expand our theoretical results.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Amorim, P., Dias, J.-P.: A nonlinear model describing a short wave-long wave interaction in a viscoelastic medium, Q. Appl. Math. doi:10.1090/S0033-569X-2012-01298-4

  2. 2.

    Amorim, P., Figueira, M.: Convergence of semi-discrete approximations of Benney equations. C. R. Acad. Sci. Paris Ser. I(347), 1135–1140 (2009)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Amorim, P., Figueira, M.: Convergence of numerical schemes for short wave long wave interaction equations. J. Hyper. Diff. Equ. 8, 777–811 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Amorim, P., Figueira, M.: Convergence of a numerical scheme for a coupled Schrödinger-KdV system. Rev. Math. Complut. doi:10.1007/s13163-012-0097-8

  5. 5.

    Antontsev, S., Dias, J.-P., Figueira, M., Oliveira, F.: Non-existence of global solutions for a quasilinear Benney system. J. Math. Fluid Mech. 13, 213–222 (2011)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Benney, D.J.: A general theory for interactions between short and long waves. Stud. Appl. Math. 56, 81–94 (1977)

    MathSciNet  Google Scholar 

  7. 7.

    Bekiranov, D., Ogawa, T., Ponce, G.: Interaction equations for short and long dispersive waves. J. Funct. Anal. 158, 357–388 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Bouchut, F., James, F.: One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal. 32, 891–933 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Cazenave, T.: Semilinear Schrödinger equations, Courant lecture notes in mathematics, vol. 10. American Mathematical Society, Providence (2003)

    Google Scholar 

  10. 10.

    Chang, Q., Wong, Y.-S., Lin, C.-K.: Numerical computations for long-wave short-wave interaction equations in semi-classical limit. J. Comput. Phys. 227, 8489–8507 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Crasta, G., LeFloch, P.G.: A class of nonconservative and non strictly hyperbolic systems. Commun. Pure Appl. Anal. 1, 513–530 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Dias, J.-P., Figueira, M.: Existence of weak solutions for a quasilinear version of Benney equations. J. Hyper. Differ. Equ. 4, 555–563 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Dias, J.-P., Frid, H.: Short waves-long wave interactions for compressible Navier-Stokes equations. SIAM J. Math. Anal. 43, 764–787 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Dias, J.-P., Figueira, M., Frid, H.: Vanishing viscosity with short wave long wave interactions for systems of conservation laws. Arch. Ration. Mech. Anal. 196, 981–1010 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Dias, J.-P., Figueira, M., Oliveira, F.: Existence of local strong solutions for a quasilinear Benney system. C. R. Math. Acad. Sci. Paris Ser. I 344, 493–496 (2007)

  16. 16.

    Godlewski, E., Raviart, P.-A.: An introduction to the linearized stability of solutions of nonlinear hyperbolic systems of conservation laws. Lecture notes, Lisbon summer school. Ellipse, Lisbon (1999)

  17. 17.

    Hörmander, L.: The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1983)

  18. 18.

    Kato, T.: Linear evolution equations of “hyperbolic” type. J. Fac. Sci. Univ. Tokyo Sect. I(17), 241–258 (1970)

    Google Scholar 

  19. 19.

    Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations, lecture notes in mathematics. Springer, Berlin (1975)

    Google Scholar 

  20. 20.

    LeFloch, P.G.: An existence and uniqueness result for two nonstrictly hyperbolic systems, IMA volumes in mathematics and its applications. In: Keyfitz, B.L., Shearer, M. (eds.) Nonlinear evolution equations that change type, pp. 126–138. Springer, New York (1990)

    Google Scholar 

  21. 21.

    LeFloch, P.G.: Hyperbolic systems of conservation laws. The theory of classical and nonclassical shock waves, lectures in mathematics. Birkhäuser, Basel (2002)

  22. 22.

    LeFloch, P.G., Xin, Z.P.: Uniqueness via the adjoint problems for systems of conservation laws. Commun. Pure Appl. Math. 46, 1499–1533 (1993)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications. Duond, Paris (1968)

    Google Scholar 

  24. 24.

    Oliveira, F.: Stability of the solitons for the one-dimensional Zakharov-Rubenchik equation. Phys. D 175, 220–240 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Tsutsumi, M., Hatano, S.: Well-posedness of the Cauchy problem for the long wave-short wave resonance equations. Nonlinear Anal. 22, 155–171 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Tsutsumi, M., Hatano, S.: Well-posedness of the Cauchy problem for Benney’s first equations of long wave short wave interactions. Funkcial. Ekvac. 37, 289–316 (1994)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Luis Sanchez for many discussions. The first three authors were partially supported by the Portuguese Foundation for Science and Technology (FCT) through the grant PTDC/MAT/110613/2009 and by PEst OE/MAT/UI0209/2011. The first author (P.A.) was also supported by the FCT through a Ciência 2008 fellowship. The fourth author (PLF) was supported by the Centre National de la Recherche Scientifique (CNRS) and the Agence Nationale de la Recherche through the grants ANR 2006-2–134423 and ANR SIMI-1-003-01.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philippe G. LeFloch.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Amorim, P., Dias, J., Figueira, M. et al. The Linear Stability of Shock Waves for the Nonlinear Schrödinger–Inviscid Burgers System. J Dyn Diff Equat 25, 49–69 (2013). https://doi.org/10.1007/s10884-012-9283-0

Download citation

Keywords

  • Schrödinger–Burgers system
  • Nonlinear Schrödinger equation
  • Shock wave
  • Linear stability