Skip to main content
Log in

The Bifurcation Study of 1:2 Resonance in a Delayed System of Two Coupled Neurons

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider a delayed system of differential equations modeling two neurons: one is excitatory, the other is inhibitory. We study the stability and bifurcations of the trivial equilibrium. Using center manifold theory for delay differential equations, we develop the universal unfolding of the system when the trivial equilibrium point has a double zero eigenvalue. In particular, we show a universal unfolding may be obtained by perturbing any two of the parameters in the system. Our study shows that the dynamics on the center manifold are characterized by a planar system whose vector field has the property of 1:2 resonance, also frequently referred as the Bogdanov–Takens bifurcation with \(Z_2\) symmetry. We show that the unfolding of the singularity exhibits Hopf bifurcation, pitchfork bifurcation, homoclinic bifurcation, and fold bifurcation of limit cycles. The symmetry gives rise to a “figure-eight” homoclinic orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arnold, V.I.: Loss of stability of self-oscillations close to resonance and versal deformation of equivariant vector fields. Funct. Anal. Appl. 11, 85–92 (1997)

    Article  Google Scholar 

  2. Baldi, P., Atiya, A.: How delays affect neural dynamics and learning. IEEE Trans. Neural. Netw. 5(4), 612–621 (1994)

    Article  Google Scholar 

  3. Bélair, J., Campbell, S.A.: Stability and bifurcations of equilibria in a multiple-delayed differential equation. SIAM J. Appl. Math. 54(5), 1402–1424 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bogdanov, R.I.: Bifurcation of the limit cycle of a family of vector fields on the plane. Trudy Sem. Petrovskii 2, 23–36 (1976). (Russian)

    MathSciNet  Google Scholar 

  5. Bogdanov, R.I.: Bifurcation of the limit cycle of a family of vector fields on the plane. Selecta Math. Soviet 1, 373–387 (1981). (English)

    MATH  Google Scholar 

  6. Bogdanov, R.I.: Versal deformation of a singularity of a vector field on the plane in case of zero eigenvalues. Trudy Sem. Petrovskii 2, 37–65 (1976). (Russian)

    MathSciNet  Google Scholar 

  7. Bogdanov, R.I.: Versal deformation of a singularity of a vector field on the plane in case of zero eigenvalues. Selecta Math. Soviet. 1, 388–421 (1981). (English)

    Google Scholar 

  8. Campbell, S.A., Bélair, J.: Analytical and symbolically-assisted investigation of Hopf bifurcations in delay-differential equations. Can. Appl. Math. Q. 3(2), 137–154 (1995)

    MATH  Google Scholar 

  9. Bélair, J., Campbell, S.A., van den Driessche, P.: Frustration, stability, and delay-induced oscillations in a neural network model. SIAM J. Appl. Math 56, 245–255 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Campbell, S.A.: Stability and bifurcation of a simple neural network with multiple time delays. In: S. Ruan, G.S.K. Wolkowicz, J. Wu (eds.) Differential Equations with Applications to Biology, Fields Institute Communications 21, 65–79 (1999)

  11. Campbell, S.A.: Calculating centre manifold for delay differential equations using Maple. In: Balachandran, B., Kalmár-Nagy, T., Gilsinn, D.E. (eds.) Delay Differential Equations: Recent Advances and New Directions. Springer, New York (2009)

    Google Scholar 

  12. Campbell, S.A., Yuan, Y.: Zero singularities of codimension two and three in delay differential equations. Nonlinearity 21, 2671–2691 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chow, S.I.-N., Li, C., Wang, D.: Normal form and bifurcations of planar vector fields. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  14. Faria, T.: Normal forms and bifurcations for delay differential equations. In: Arino, O., Kbid, M.L., Ait Dads, E. (eds.) Delay Differential Equations and Applications, p. V205. Nato Science SeriesSpringer, Berlin (2006)

  15. Faria, T., Magalhães, L.: Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation. J. Differ. Equ. 122, 181–200 (1995)

    Article  MATH  Google Scholar 

  16. Gilsinn, D.E.: Bifurcations, center manifolds, and periodic solutions. In: Balachandran, B., Kalmár-Nagy, T., Gilsinn, D.E. (eds.) Delay Differential Equations: Recent Advances and New Directions. Springer, New York (2009)

    Google Scholar 

  17. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences 42. Springer, New York (1983)

    Google Scholar 

  18. Gopalsamy, K., Leung, I.: Delay induced periodicity in a neural netlet of excitation and inhibition. Physica. D 89(3–4), 395–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81, 3088–3092 (1984)

    Article  Google Scholar 

  20. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

    MATH  Google Scholar 

  21. Qesmi, R., Ait, Babram M.: Symbolic computation for center manifolds and normal forms of Bogdanov bifurcation in retarded functional differential equations. Nonlinear Anal. 66, 2833–2851 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, Berlin (1998)

    MATH  Google Scholar 

  23. Kolmanovskii, V.B., Nosov, V.R.: Stability of Functional-Differential Equations, Mathematics in Science and Engineering, vol 180. Academic Press Inc, London (1986)

    Google Scholar 

  24. Marcus, C.M., Westervelt, R.M.: Stability of analog neural networks with delay. Phys. Rev. A 39, 347–359 (1989)

    Google Scholar 

  25. Olien, L., Bélair, J.: Bifurcations, stability, and monotonicity properties of a delayed neural network model. Physica D 102(3–4), 349–363 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pakdaman, K., Malta, C.P., Grotta-Ragazzo, C., Arino, O., Vibert, J.-F.: Transient oscillations in continuous-time excitatory ring neural networks with delay. Phys. Rev. E 55, 3234–3248 (1997)

    Article  MathSciNet  Google Scholar 

  27. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2007)

    Google Scholar 

  28. Shayer, L.P., Campbell, S.A.: Stability, bifurcation and multistability in a system of two coupled neurons with multiple time delays. SIAM J. Appl. Math. 61, 673–700 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stépán G.: Retarded Dynamical Systems: Stability and Characteristic Functions, Pitman Research Notes in Mathematics Series, 210. Longman Scientific & Technical, Harlow, copublished in the United States with Wiley, New York (1989)

  30. Takens, F.: Forced oscillations and bifurcations. In Applications of Global Anslysis I, Communications of the Mathematical Institute Rijksuniversiteit Utrecht 3, (1974)

  31. Ye, H., Michel, A., Wang, K.: Qualitative analysis of Cohen-Grossberg neural networks with multiple delays. Phys. Rev. E 51, 2611–2618 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Guihong Fan would like to thank Chunhua Shan for useful comments and discussion and the LAMPS Lab where the work was finished as a postdoctoral fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiping Zhu.

Additional information

The research of Campbell and Wolkowicz is partially supported by NSERC, Zhu is supported by NSERC and an Early Researcher Award, Ministry of Research & Innovation of Ontario, Canada.

Appendix

Appendix

1.1 Proof of Lemma 3.1

Proof

In order to study (3.18), we want to simplify it term by term. Before doing so, we show that the term \(\Psi (0)(L(\epsilon )-L(0)) h(z(t),\epsilon )\) only contributes to higher order terms of \(z\), which can be neglected. To use results of [21], we partially adopt its notation and rewrite

$$\begin{aligned} h(z,\epsilon )=\sum _{k=2}^m h_k(z,\epsilon )+\chi (z,\epsilon ) \end{aligned}$$

where \(h_k\) (\(2\leqslant k\leqslant m\)) is the homogeneous part of degree \(k\) and \(\chi (z,\epsilon )=o(|(z,\epsilon )|^m)\). If \(z=(z_1,z_2)\in \mathbb R ^2, q=(q_1,q_2), \epsilon =(\epsilon _1,\epsilon _2,\epsilon _3), \epsilon ^l=\epsilon _1^{l_1}\epsilon _2^{l_2}\epsilon _3^{l_3}\) for \(l=(l_1,l_2,l_3)\in \mathbb N ^3\), and \(|l|=\sum _{i=1}^3 l_i\), then we can rewrite \(h_k(z,\epsilon )\) as

$$\begin{aligned} h_k(z,\epsilon )=\sum _{(q,l)\in D_k} h_{(q,l)}^k z_1^{q_1}z_2^{q_2}\epsilon ^l \quad \mathrm for \quad k\geqslant 2, \end{aligned}$$

where \(h_{(q,l)}^k\in \mathbb Q \) and \(D_k=\{(q,l)\in \mathbb N ^5:|(q,l)|=k\}\). Recall that \(\mathbb Q \) is the subspace of \(C=C([-h,0], \mathbb R ^n)\) defined in Sect. 3.1. Let \(R_{(q,l)}^{k-1}\in \mathbb R ^2\) with

$$\begin{aligned} R^{k-1}(z,\epsilon )=\sum _{(q,l)\in D_k} R_{(q,l)}^{k-1} z_1^{q_1}z_2^{q_2}\epsilon ^l \end{aligned}$$

being the homogeneous part of degree \(i\) of \(R(z,\epsilon )=(L(\epsilon )-L(0))(\Phi z+h(z,\epsilon )) +F(\Phi z+h(z,\epsilon ),\epsilon )\). In particular, for \(k=2, R^1\) is the homogeneous part of degree \(2\) of \((L(\epsilon )-L(0))(\Phi z)+F(\Phi z,\epsilon )\) which is independent from terms on the center manifold and given by

$$\begin{aligned} \begin{aligned} R^{1}(z,\epsilon )&=\begin{bmatrix} \left((1+a)\tau \epsilon _2-b\tau \epsilon _3 +O(|\epsilon |^2)\right)z_1+\left(b^2(1+a)\epsilon _1 +(a+1)a\tau \epsilon _2+b\tau \epsilon _3+O(|\epsilon |^2)\right)z_2\\ \left(-b\tau \epsilon _2+(1+a)\tau \epsilon _3 +O(|\epsilon |^2)\right)z_1+\left(b^3\epsilon _1+\epsilon _3 +O(|\epsilon |^2)\right)z_2 \end{bmatrix}\\&\quad +F(\Phi z,\epsilon ). \end{aligned} \end{aligned}$$

By Theorem 3.3**** of [21], for \(k=2\) and \((q,l)\in D_2\), we have

$$\begin{aligned} \begin{aligned} h^2_{(q_1,0,l)}&=h^2_{(q_1,0,l)}(0)+\begin{bmatrix}\theta&\quad \theta ^2\\ 0&\quad \theta \end{bmatrix}\Phi (0)\Psi (0)R^1_{(q_1,0,l)},\\ h^2_{(q_1,q_2,l)}&=h^2_{(q_1,q_2,l)}(0)+\int _0^{\theta } (q_1+1)h^2_{(q_1+1,q_2-1,l)}(s)\mathrm d s\\&\quad +\begin{bmatrix}\theta&\quad \theta ^2\\ 0&\quad \theta \end{bmatrix}\Phi (0)\Psi (0)R^1_{(q_1,q_2,l)},\qquad \qquad \mathrm for \qquad q_2\ne 0. \end{aligned} \end{aligned}$$

Since \(R^1(z,0)=0\), we have that \(h_{(q_1,0,0)}^2=0\). We can obtain that \(h_2(z,\epsilon )=O(|\epsilon |)O(|z|)\). We have

$$\begin{aligned} \begin{aligned} \Psi (0)(L(\epsilon )-L(0))h(z(t),\epsilon )&=\Psi (0)(L(\epsilon )\\&\quad -L(0)) \left[h_2(z(t),\epsilon ) +h_3(z(t),\epsilon )+h_4(z(t),\epsilon )+\cdots \right]\\&=\Psi (0)(L(\epsilon )-L(0))\bigg [\sum _{k=3}^ {\infty }h^3_{(q_1,q_2,0)}z_1^{q_1}z_2^{q_2}+O(|\epsilon |)O(|z|)\bigg ]\\&=O(|\epsilon |)\bigg [\sum _{k=3}^{\infty } h^3_{(q_1,q_2,0)}z_1^{q_1}z_2^{q_2}+O(|\epsilon |)O(|z|)\bigg ]\\&=O(|\epsilon |)O(|z|^3)+O(|\epsilon |^2)O(|z|). \end{aligned} \end{aligned}$$

One can verify that for the linear terms of \(\dot{z}(t)\), we have

$$\begin{aligned} \begin{aligned} (L(\epsilon )\!-\!L(0))\Phi (\theta )z(t)\!=\!\begin{bmatrix} \left[(1+a)(\tau \epsilon _2+\epsilon _1(a-1)) -b(\tau \epsilon _3+b\epsilon _1)+O(|\epsilon |^2)\right]z_1\\ +\left[(\tau \epsilon _2+\epsilon _1(a-1))(1+a) a+b(\tau \epsilon _3+b\epsilon _1)+O(|\epsilon |^2)\right]z_2\\ \left[(\tau \epsilon _3+b\epsilon _1)(1+a)-b(\tau \epsilon _2 +\epsilon _1(a+1))+O(|\epsilon |^2)\right]z_1\\ +\left[b^2(\tau \epsilon _3+b\epsilon _1) +O(|\epsilon |^2)\right]z_2\end{bmatrix}. \end{aligned} \end{aligned}$$

Let \(\mathcal L (z(t),\epsilon )=\begin{bmatrix} \mathcal L _1\\\mathcal L _2\end{bmatrix}= \Psi (0)(L(\epsilon )-L(0))\Phi (\theta )z(t)\). If we denote

$$\begin{aligned} d_1=\frac{1}{3b(1+a^2)^2}\qquad \mathrm and \qquad d_2=\frac{1}{3b(1+a^2)}, \end{aligned}$$

then by using (2.6), we have

$$\begin{aligned} \begin{aligned} \mathcal L _1&=d_1\big \{ \big [ab\tau (5-3a-3a^2-3a^3)\epsilon _2-(2-3a-6a^2-3a^3)\epsilon _3 +O(|\epsilon |^2)\big ]z_1\\&\quad +\big [b^3(2-3a-3a^2-3a^3+3a^4)\epsilon _1 + b\tau (1-3a^2)(a+a^2)\epsilon _2\\&\quad +(2-4a-3a^2+3a^4)\epsilon _3+O(|\epsilon |^2)\big ]z_2\big \} \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \mathcal L _2&= 3d_2\{ \big [2ab\tau \epsilon _2-2\epsilon _3+O(|\epsilon |^2)\big ]z_1\\&+\big [b(a+a^2)\tau \epsilon _2+2b^3\epsilon _1+(2-a)\epsilon _3 +O(|\epsilon |^2)\big ]z_2\}. \end{aligned}$$

For higher order terms, we have

$$\begin{aligned} \begin{aligned} F(\Phi z(t))&=\frac{\tau }{3}\begin{bmatrix}-a(1+a)^3(z_1+a z_2)^3+b^4(z_1-z_2)^3+O(|\epsilon |)O(|z|^3)\\ a b^3 z_1^3-b(1+a)^3(z_1+(a-1)z_2)^3+O(|\epsilon |)O(|z|^3)\end{bmatrix}. \end{aligned} \end{aligned}$$

Letting \(\tilde{\mathcal{L }}(z(t),\epsilon )=\begin{bmatrix} \tilde{\mathcal{L }}_1\\\tilde{\mathcal{L }}_2\end{bmatrix}=\Psi (0)F(\Phi z(t))\), we have

$$\begin{aligned} \begin{aligned} \tilde{\mathcal{L }}_1&=\tau d_1(1-a)(1/3-a-a^2-a^3)[a b^3 z_1^3-b(1+a)^3(z_1+(a-1)z_2)^3]\\&+\tau d_1 b(1/3-a^2)[-a(1+a)^3(z_1+a z_2)^3+b^4(z_1-z_2)^3]+O(|\epsilon |)O(|z|^3) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \tilde{\mathcal{L }}_2=&\tau d_2 (1-a)\left[a b^3 z_1^3-b(1+a)^3(z_1+(a-1)z_2)^3\right]\\&+\tau d_2 b[-a(1+a)^3(z_1+a z_2)^3+b^4(z_1-z_2)^3]+O(|\epsilon |)O(|z|^3). \end{aligned} \end{aligned}$$

Then the equation of \(z\) can be reduced to

$$\begin{aligned} \begin{aligned} \dot{z}&=Bz+\Psi (0)(L(\epsilon )-L(0))\Phi (\theta )z(t)+\Psi (0)(L(\epsilon )-L(0))h(z(t), \epsilon )\\&\quad +\Psi (0)F(\Phi (\theta )z(t)+h(z(t),\epsilon ))\\&=Bz+\mathcal L (z(t),\epsilon )+O(|\epsilon |)O(|z|^3)+O(|\epsilon |^2)O(|z|)\\&\quad +\Psi (0)F\left(\Phi (\theta )z(t)+O(|z|^3)+O(|\epsilon |)O(|z|)\right)\\&=Bz+\mathcal L (z(t),\epsilon )+\tilde{\mathcal{L }}(z(t),\epsilon ) +O(|\epsilon |^2)O(|z|)+O(|\epsilon |)O(|z|^3)+O\left(|z|^5\right), \end{aligned} \end{aligned}$$

or equivalently system (3.19) in an explicit form. \(\square \)

1.2 Proof of Lemma 3.2

Proof

By Lemma 3.1, we have obtained the explicit form of equations (3.19) on the center manifold. In order to get a universal unfolding of the perturbed system (3.9), we need to reduce the system further. To do that, let \(u=z_1\) and \(w=\dot{z}_1\).

$$\begin{aligned} \begin{aligned} w&=z_2+3 d_1\left\{ l_{110} z_1+ l_{101}z_2\right\} \\&\quad +\frac{\tau d_1}{3}\left\{ b(1-3a^2)\right.\left[-a(1+a)^3(z_1+a z_2)^3+b^4(z_1-z_2)^3\right]\\&\quad +\left.(1-4a+3a^4)\left[a b^3 z_1^3-b(1+a)^3(z_1+(a-1)z_2)^3\right] {+}O(|\epsilon |)O(|z|^3)\right\} +O(|z^5|). \end{aligned} \end{aligned}$$

Expanding \(w\) and substituting \(z_1=u\) gives

$$\begin{aligned} \begin{aligned} w&=z_2+3 d_1\big \{l_{110} u+ l_{101}z_2\big \}\\&\quad +\tau d_1 b(1/3-a^2)\big \{\big [-a(1+a)^3+b^4\big ]u^3 +\big [-a(1+a)^3 3a -3b^4\big ]u^2 z_2\\&\quad +\big [-a(1+a)^3 3a^2+3 b^4\big ]u z_2^2+\big [-a(1+a)^3 a^3-b^4\big ]z_2^3+O(|\epsilon |)O(|z|^3)\big \}\\&\quad +\tau d_1(1/3-4a/3+a^4)\big \{[a b^3 -b(1+a)^3] u^3-b(1+a)^3 3(a-1) u^2 z_2 \\&\quad -b(1+a)^3 3(a-1)^2 u z_2^2-b^7 z_2^3+O(\epsilon )O(|z|^3)\big \}+O(|z^5|). \end{aligned} \end{aligned}$$

Assume that \(z_2=f_{10}u+f_{01}w+f_{30}u^3+f_{03}w^3+f_{21} u^2 w +f_{12}u w^2+O(|(u,w)|^4)\). Plugging in \(w\) and equating the coefficients of the same term yields

$$\begin{aligned} \begin{aligned} f_{10}&=3d_1 \left[\left(2/3-a-2a^2-a^3\right)\epsilon _3-ab\tau \left(5/3-a-a^2-a^3\right)\epsilon _2\right]+O(|\epsilon |^2),\\ f_{01}&=1-3d_1\left[ b(1/3-a^2)\tau (a+a^2)\epsilon _2{+}b^3(2/3-a-a^2-a^3+a^4)\epsilon _1\right.\\&\qquad \left.+(2/3-4a/3-a^2+a^4)\epsilon _3\right] +O(|\epsilon |^2),\\ f_{30}&=-b\tau d_1\left[(1/3-a^2)(b^4{-}a(1+a)^3){+}(1/3-4a/3+a^4)(ab^2-(1{+}a)^3)\right] {+}O(|\epsilon |),\\ f_{03}&=\tau b d_1\left[(1/3-a^2)(b^4+a^4(1+a)^3)+b^6(1/3-4a/3+a^4))\right] +O(|\epsilon |),\\ f_{12}&=b\tau d_1\left[(1/3-a^2)(3a^3(1+a)^3-3b^4)+3b^4(1+a)(1/3-4a/3+a^4))\right] +O(|\epsilon |),\\ f_{21}&=b\tau d_1\left[(1/3-a^2)(3a^2(1+a)^3+3b^4)+3b^2(1+a)^2(1/3-4a/3+a^4))\right] \!+\!O(|\epsilon |). \end{aligned} \end{aligned}$$

Then we have \(\dot{u}=\dot{z}_1=w\) and

$$\begin{aligned} \begin{aligned} \dot{w}&=3d_1 l_{110}\dot{z}_1+\left\{ 1+3d_1 l_{101}\right\} \dot{z}_2\\&\quad +\tau d_1(1-3a^2)\left[-a(1+a)^3 (z_1+a z_2)^2 (\dot{z}_1+a\dot{z}_2)+b^4 (z_1-z_2)^2(\dot{z}_1-\dot{z}_2)\right]\\&\quad +\tau d_1(1-4a+3a^4)\left[a b^3 z_1^2\dot{z}_1 -b(1+a)^3(z_1+(a-1)z_2)^2(\dot{z}_1+(a-1)\dot{z}_2)\right]\\&\quad +O(|\epsilon |)O(|z|^3)+O(|z|^5)\\&=3d_1 l_{110}w +\left[1+O(|\epsilon |)\right]\dot{z}_2\\&\quad +\tau d_1(1-3a^2)\left[-a(1+a)^3 (z_1^2+2 z_1 a z_2+a^2 z_2^2) (w+a\dot{z}_2)\right]\\&\quad \left.+ b^4 (z_1^2-2z_1 z_2 +z_2^2)(w-\dot{z}_2)\right]\\&\quad +\tau d_1(1-4a+3a^4)\left[a b^3 z_1^2 w -b(1+a)^3 (z_1^2+2 z_1 (a-1)z_2\right.\\&\quad \left.+(a-1)^2z_2^2)(w+(a-1)\dot{z}_2)\right]\\&\quad +O(|\epsilon |)O(|z|^3)+O(|z|^5). \end{aligned} \end{aligned}$$

Plug in \(\dot{z}_2\),

$$\begin{aligned} \begin{aligned} \dot{w}&=3d_1 l_{110}w+3d_2\big \{l_{210}u +l_{201}(f_{10}u+f_{01}w+O(|(u,w)|^3))\big \}\\&\quad +\tau d_2\big \{b\big [-a(1+a)^3(z_1+a z_2)^3+b^4(z_1-z_2)^3\big ]\\&\quad +(1-a)\big [a b^3 z_1^3-b(1+a)^3(z_1+(a-1)z_2)^3\big ]\big \}\\&\quad +\tau b d_1(1-3a^2)\big [-a(1+a)^3 (z_1^2+2 z_1 a z_2+a^2 z_2^2) (w+a\dot{z}_2)\\&\quad + b^4 (z_1^2-2z_1 z_2 +z_2^2)(w-\dot{z}_2)\big ]\\&\quad +\tau d_1 (1-4a+3a^4)\big [a b^3 z_1^2 w -b(1+a)^3(z_1^2+2 z_1 (a-1)z_2\\&\quad +(a-1)^2z_2^2)(w+(a-1)\dot{z}_2)\big ]\\&\quad +O(|\epsilon |)O(|z|^3)+O(|z|^5). \end{aligned} \end{aligned}$$

Noting that \(f_{10}=O(|\epsilon |)\) and \(f_{01}=1+O(|\epsilon |)\), we collect the similar order terms

$$\begin{aligned} \dot{w}&= 3d_2l_{210}u +3d_1 \big [l_{110}+(1+a^2)l_{201}\big ]w\\&+\,\tau d_2\big \{b\big [-a(1{+}a)^3(u^3{+}3au^2z_2{+}3a^2uz_2^2{+}a^3 z_2^3)+b^4(u^3-3u^2z_2+3uz_2^2-z_2^3)\big ]\\&+\,(1-a)\big [a b^3 u^3-b(1+a)^3(u^3+3u^2(a-1)z_2+3u(a-1)^2z_2^2+(a-1)^3z_2^3)\big ]\big \}\\&+\,\tau b d_1(1-3a^2)\big [-a(1+a)^3(u^2+2u a z_2+a^2 z_2^2) (w+a\dot{z}_2)\\&+\, b^4 (u^2-2u z_2 +z_2^2)(w-\dot{z}_2)\big ]\\&+\,\tau (1-4a+3a^4)d_1\big [a b^3 u^2 w -b(1+a)^3(u^2+2 u (a-1)z_2\\&+\,(a-1)^2z_2^2)(w+(a-1)\dot{z}_2)\big ]\\&+\,O(|\epsilon |)O(|z|^3)+O(|z|^5). \end{aligned}$$

Note that \(\dot{z}_2=O(|\epsilon |)u+O(|\epsilon |)w+O(|(u,w)|^3)\) and it only contributes \(\epsilon \) small terms to the third order terms of \(u\) and \(v\). We can neglect it. Plugging in the near-identity transformation

$$\begin{aligned} z_2=f_{10}u+f_{01}w+O(|(u,w)|^3)=w+O(|\epsilon |)u +O(|\epsilon |)w+O(|(u,w)|^3), \end{aligned}$$

we have

$$\begin{aligned} \begin{aligned} \dot{w}&=3d_2 l_{210}u +3d_1\big [2b^3(1+a^2)\epsilon _1+8/3ab\tau \epsilon _2+(4a^2+4/3) \epsilon _3+O(|\epsilon |^2)\big ]w\\&\quad +\tau d_2\big \{-ab(1+a)^3(u^3+3a u^2w+3a^2uw^2+a^3 w^3)\\&\quad +b^5(u^3-3u^2w+3uw^2-w^3)\\&\quad +a(1-a) b^3 u^3-b(1-a)(1+a)^3\big [u^3+3(a-1)u^2w\\&\quad +3(a-1)^2uw^2+(a-1)^3w^3\big ]\big \}\\&\quad +\tau b d_1(1-3a^2)\big [-a(1+a)^3 (u^2w+2auw^2+a^2 w^3) + b^4 (u^2w-2u w^2 +w^3)\big ]\\&\quad +\tau (1-4a+3a^4)d_1\big [a b^3 u^2 w -b(1+a)^3 (u^2w+2 u (a-1)w^2+(a-1)^2w^3)\big ]\\&\quad +O(|\epsilon |)O(|(u,w)|^3)+O(|(u,w)|^5). \end{aligned} \end{aligned}$$

Collecting the coefficients of common terms gives

$$\begin{aligned} \begin{aligned} \dot{w}&=3d_2l_{110}u +3d_1\left[2b^3(1+a^2)\epsilon _1+8/3ab\tau \epsilon _2 +(4a^2+4/3)\epsilon _3+O(|\epsilon |^2)\right]w\\&+g_{30}u^3+g_{21}u^2w+g_{12}uw^2+g_{03}w^3, \end{aligned} \end{aligned}$$

with

$$\begin{aligned} \begin{aligned} g_{30}&=\tau d_2\big \{-ab(1+a)^3+b^5+a(1-a) b^3 -b(1-a)(1+a)^3\big \}+O(|\epsilon |)\\&=\tau b d_2\big \{b^2(a-1)-(1+a^3)\big \}+O(|\epsilon |)\\&=-\frac{4}{3}\frac{a}{(a-1)(a^2+1)}+O(|\epsilon |),\\ g_{21}&=\tau d_2\big \{-3a^2b(1+a)^3 -3b^5 + 3b(1+a)^3 (a-1)^2\big \}\\&\quad +\tau bd_1(1-3a^2)\big \{-a(1+a)^3+ b^4\big \}\\&\quad +\tau b d_1(1-4a+3a^4)\big \{ab^2-(1+a)^3\big \}+O(|\epsilon |)\\&=-\frac{2}{3}\frac{(9a^4-1)a}{(1+a^2)^2(a-1)}+O(|\epsilon |),\\ \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} g_{12}&=\tau d_2\left\{ -ab(1+a)^3 3a^2+3b^5 + 3b(1+a)^3 (a-1)^3\right\} \\&\qquad +\tau d_1\left\{ b(1/3-a^2)(-3a)(1+a)^3 2a-6 (1/3-a^2) b^5\right.\\&\left.\qquad -\,6b(a-1)(1/3-4a/3+a^4)(1+a)^3\right\} +O(|\epsilon |)\\&=-\frac{1}{3}\frac{a(1+a)(6a^5+3a^4-21a^3+15a^2-3a+4)}{(1+a^2)^2(a-1)} +O(|\epsilon |),\\ g_{03}&=\tau d_2\left\{ -ab(1+a)^3 a^3-b^5 + b(1+a)^3 (a-1)^4\right\} \\&\qquad +\tau d_1\left\{ b(1/3-a^2)(-3a^3)(1+a)^3+b(1/3-a^2)3b^4\right.\\&\left.\qquad -(1/3-4a/3+a^4)3b(1+a)^3(a-1)^2\right\} +O(|\epsilon |)\\&=\tau b d_2\left\{ -b^4+(a-1)b^6-a^4(1+a)^3\right\} \\&\qquad +\tau b d_1\left\{ (1-3a^2)b^4-(1-4a+a^3)(1+a)^3(a-1)^2\right.\\&\qquad \left.-\,a^3(1-3a^2)(1+a)^3\right\} +O(|\epsilon |)\\&=-\frac{1}{3}\frac{a(1+a)(3a^5+a^4-7a^3-a^2-2a+2)}{(1+a^2)^2} +O(|\epsilon |). \end{aligned} \end{aligned}$$

Therefore

$$\begin{aligned} \left\{ \begin{array}{ll} \dot{u}&=\ \ w,\\ \dot{w}&=\ \ 3d_2[2ab\tau \epsilon _2-2\epsilon _3+O(|\epsilon |^2)]u \\ &\ \ \ \ \ +3d_1\left[2b^3(1+a^2)\epsilon _1+8/3ab\tau \epsilon _2 +(4a^2+4/3)\epsilon _3+O(|\epsilon |^2)\right]w\\ &\ \ \ \ \ +g_{30}u^3+g_{21}u^2w+g_{12}uw^2+g_{03}w^3+O(|(u,w)|^5), \end{array}\right. \end{aligned}$$

which is system (3.20). \(\square \)

1.3 Proof of Lemma 3.3

Proof

In order to simplify the third order terms in the equation of \(\omega \) in system (3.20), we use the method of Perko [27, p. 164–167] and take the near-identity transformation with undetermined coefficients \(x\) and \(\phi \) as

$$\begin{aligned} \begin{bmatrix}u\\ w\end{bmatrix}=\begin{bmatrix}y_1\\ y_2\end{bmatrix}+h_3(y_1,y_2), \end{aligned}$$

where

$$\begin{aligned} h_3(y_1,y_2)=\begin{bmatrix}h_{31}(y_1,y_2)\\ h_{32}(y_1,y_2)\end{bmatrix}=\begin{bmatrix} x_{30}y_1^3+x_{21}y_1^2y_2+x_{12}y_1y_2^2 +x_{30}y_2^3\\ \phi _{30}y_1^3+\phi _{21}y_1^2y_2+\phi _{12}y_1y_2^2+\phi _{30}y_2^3 \end{bmatrix}\!. \end{aligned}$$

Then system (3.20) is reduced to

$$\begin{aligned} \dot{y}=J y +\tilde{F}_3(y)+O(|(y_1,y_2)|^5), \end{aligned}$$
(5.1)

where

$$\begin{aligned} \begin{aligned} \tilde{F}_3(y)&=\begin{bmatrix}\tilde{F}_{31}\\ \tilde{F}_{32}\end{bmatrix}=J h_3(y)-D h_3(y) J y +F_3(y)\\&=\begin{bmatrix}0,&1\\3d_2[2ab\tau \epsilon _2-2\epsilon _3],&3d_2\left[2b^3(1+a^2)\epsilon _1+8/3ab\tau \epsilon _2 +(4a^2+4/3)\epsilon _3\right]\end{bmatrix}\begin{bmatrix}h_{31}(y_1,y_2)\\ h_{32}(y_1,y_2)\end{bmatrix}\\[1ex]&\qquad -\begin{bmatrix} x_{30}3y_1^2+x_{21}2y_1y_2+x_{12}y_2^2,&x_{21}y^2_1 +2x_{12}y_1y_2+3x_{03}y_2^2\\ \phi _{30}3y_1^2+\phi _{21}2y_1y_2+\phi _{12}y_2^2,&\phi _{21}y^2_1+2\phi _{12}y_1y_2+3\phi _{03}y_2^2 \end{bmatrix} J y\\&\qquad +\begin{bmatrix}0\\ g_{30}y_1^3+g_{21}y_1^2y_2+g_{12}y_1y_2^2+g_{03}y_2^3\end{bmatrix}\\ \end{aligned} \end{aligned}$$

After simplification, we have

$$\begin{aligned} \begin{aligned} \tilde{F}_{31}=&h_{32}(y_1,y_2)-(x_{30}3y_1^2y_2+x_{21}2y_1y_2^2 +x_{12}y_2^3)\\&-(J_{21}y_1+J_{22}y_2)(x_{21}y^2_1+2x_{12}y_1y_2+3x_{03}y_2^2)\\ \tilde{F}_{32}=&J_{21}h_{31}+J_{22}h_{32} -(\phi _{30}3y_1^2y_2+\phi _{21}2y_1y_2^2+\phi _{12}y_2^3)\\&+(J_{21}y_1+J_{22}y_2)(\phi _{21}y^2_1+2\phi _{12}y_1y_2+3\phi _{03}y_2^2 \\&+ g_{30}y_1^3+g_{21}y_1^2y_2+g_{12}y_1y_2^2+g_{03}y_2^3. \end{aligned} \end{aligned}$$

The near-identity transformation does not change the linear part of the system (3.3), but only has impact on the higher order terms. We want to select coefficients \(x\) and \(\phi \) so that the higher order terms of the \(y_1\) equation disappear i.e. \(\tilde{F}_{31}=0\) and the higher order terms of the \(y_2\) equation is as simple as possible. To be specific, we force the coefficients of \(y_1y_2^2\) and \(y_2^3\) in \(\tilde{F}_{32}\) and all coefficients of \(y_1^3, y_1^2y_2, y_1y_2^2\), and \(y_2^3\) in \(\tilde{F}_{31}\) to be zero. We have six equations and \(8\) undetermined coefficients \(x\) and \(\phi \) in total. There exists infinitely many solutions. For the sake of simplicity, we let \(x_{03}=0\) and \(\phi _{03}=0\) and obtain a set of coefficients given by:

$$\begin{aligned} \begin{aligned}&x_{30}=\frac{1}{6}g_{12}-\frac{1}{3}J_{22}g_{03},&x_{21}=\frac{1}{2}g_{03},&\qquad x_{12}=0,&x_{03}=0,\\&\phi _{30}=J_{21},&\phi _{21}=\frac{1}{2}g_{12}+\frac{3}{2}J_{22}g_{03},&\qquad \phi _{12}=g_{03},&\phi _{03}=0. \end{aligned} \end{aligned}$$

Therefore

$$\begin{aligned} \begin{bmatrix}h_{31}(y_1,y_2)\\ h_{32}(y_1,y_2)\end{bmatrix}=\begin{bmatrix}(\frac{1}{6}g_{12} -\frac{1}{3}J_{22}g_{03})y_1^3+\frac{1}{2}g_{03}y_1^2y_2\\ J_{21}y_1^3+(\frac{1}{2}g_{12}+\frac{3}{2}J_{22}g_{03})y_1^2y_2 +g_{03}y_1y_2^2\end{bmatrix}. \end{aligned}$$

The system (5.1) is transformed to

$$\begin{aligned} \begin{bmatrix} \dot{y}_1\\\dot{y}_2 \end{bmatrix} =J \begin{bmatrix} y_1\\ y_2\end{bmatrix}+\begin{bmatrix} 0\\ (g_{30}+O(|\epsilon |))y_1^3+(g_{21}+O(|\epsilon |))y_1^2y_2 +O(|(y_1,y_2)|^5)\end{bmatrix} \end{aligned}$$
(5.2)

Plugging in \(d_1, d_2, g_{30}\), and \(g_{21}\) gives system (3.21). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, G., Campbell, S.A., Wolkowicz, G.S.K. et al. The Bifurcation Study of 1:2 Resonance in a Delayed System of Two Coupled Neurons. J Dyn Diff Equat 25, 193–216 (2013). https://doi.org/10.1007/s10884-012-9279-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-012-9279-9

Keywords

Navigation