Skip to main content
Log in

Hopf Bifurcation in a Diffusive Logistic Equation with Mixed Delayed and Instantaneous Density Dependence

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

A diffusive logistic equation with mixed delayed and instantaneous density dependence and Dirichlet boundary condition is considered. The stability of the unique positive steady state solution and the occurrence of Hopf bifurcation from this positive steady state solution are obtained by a detailed analysis of the characteristic equation. The direction of the Hopf bifurcation and the stability of the bifurcating periodic orbits are derived by the center manifold theory and normal form method. In particular, the global continuation of the Hopf bifurcation branches are investigated with a careful estimate of the bounds and periods of the periodic orbits, and the existence of multiple periodic orbits are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Azevedo K.A.G., Ladeira L.A.C.: Hopf bifurcation for a class of partial differential equation with delay. Funkcialaj Ekvacioj 47, 395–422 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Busenberg S., Huang W.: Stability and Hopf Bifurcation for a Population Delay Model with Diffusion Effects. J. Differ. Equ. 124, 80–107 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, S., Shi, J.: Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect. Submitted (2011)

  4. Chow S.N., Hale J.K.: Methods of Bifurcation Theory. Springer, New York (1982)

    Book  MATH  Google Scholar 

  5. Cooke, K.L., Huang, W.: A theorem of George Seifert and an equation with state-dependent delay. In: Fink, A.M., Miller, R.K., Kliemann, W. (eds.) Delay and Differential Equations, pp. 65–77. World Scientific, Singapore (1992)

  6. Cushing J.M.: Integrodifferential Equations and Delay Models in Population Dynamics. Lecture Notes in Biomathematics, vol. 20. Springer, Berlin (1977)

    Book  Google Scholar 

  7. Dos Santos J.S., Bená M.A.: The delay efect on reaction-diffusion equations. Appl. Anal. 83, 807–824 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Faria T.: Normal form for semilinear functional differential equations in Banach spaces and applications. Part II. Disc. Cont. Dyn. Syst. 7(1), 155–176 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Faria, T., Huang, W.: Stability of periodic solutions arising from Hopf bifurcation for a reaction-diffusion equation with time delay. In: Differential Equations and Dynamical Systems (Lisbon, 2000), vol. 31, pp. 125–141. Fields Institute Communications, American Mathematical Society, Providence, RI (2002)

  10. Faria T., Huang W., Wu J.: Smoothness of center manifolds for maps and formal adjoints for semilinear FDEs in general Banach spaces. SIAM J. Math. Anal. 34((1), 173–203 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Friedman A.: Remarks on the maximum principle for parabolic equations and its applications. Pac. J. Math. 8, 201–211 (1958)

    MATH  Google Scholar 

  12. Friesecke G.: Convergence to equilibrium for delay-diffusion equations with small delay. J. Dyn. Differ. Equ. 5, 89–103 (1993)

    Article  MathSciNet  Google Scholar 

  13. Gopalsamy K.: Stability and oscillations in delay differential equations of population. In: Mathematics and its Applications, vol. 74. Kluwer, Dordrecht (1992)

    Google Scholar 

  14. Green, D., Stech, H.: Diffusion and hereditary effects in a class of population models. In: Busenberg, S., Cooke, C. (eds.) Differential Equation and Applications in Ecology, Epidemics and Population Problems, pp. 19–28, Academic Press, New York (1981)

  15. Gurney M.S., Blythe S.P., Nisbet R.M.: Nicholson’s bowflies revisited. Nature 287, 17–21 (1980)

    Article  Google Scholar 

  16. Hutchinson G.E.: Circular Causal Systems in Ecology. Ann. N. Y. Acad. Sci. 50, 221–246 (1948)

    Article  Google Scholar 

  17. Henry D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    Google Scholar 

  18. Huang W.: Global dynamics for a reaction-diffusion equation with time delay. J. Differ. Equ. 143, 293–326 (1998)

    Article  MATH  Google Scholar 

  19. Krawcewicz W., Wu J.: Theory of degrees with applications to bifurcations and differential equations. In: Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1997)

    Google Scholar 

  20. Kuang Y., Smith H.L.: Global stability in diffusive delay Lotka-Volterra systems. Differ. Integr. Equ. 4, 117–128 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Kuang Y., Smith H.L.: Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks. J. Aust. Math. Soc. B 34, 471–493 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lenhart S.M., Travis C.C.: Global stability of a biological model with time delay. Proc. Am. Math. Soc. 96, 75–78 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li W.T., Yan X.P., Zhang C.H.: Stability and Hopf bifurcation for a delayed cooperation diffusion system with Dirichlet boundary conditions. Chaos Solitons Fract. 38, 227–237 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. May R.M.: Time-delay versus stability in population models with two and three trophic levels. Ecology 54, 315–325 (1973)

    Article  Google Scholar 

  25. May R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1973)

    Google Scholar 

  26. Maynard-Smith J.: Models in Ecology. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  27. Memory M.C.: Bifurcation and asymptotic behaviour of solutions of a delay-differential equation with diffusion. SIAM J. Math. Anal. 20, 533–546 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Miller R.: On Volterra’s population equation. SIAM J. Appl. Math. 14, 446–452 (1996)

    Article  Google Scholar 

  29. Morita Y.: Destabilization of periodic solutions arising in delay-diffusion systems in several space dimensions. Jpn. J. Appl. Math. 1, 39–65 (1984)

    Article  MATH  Google Scholar 

  30. Nirenberg L.: A strong maximum principle for parabolic equations. Commun. Pure Appl. Math. 6, 167–177 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pao C.V.: Dynamics of nonlinear parabolic systems with time delays. J. Math. Anal. Appl. 198, 751–779 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Parrot M.E.: Linearized stability and irreducibility for a functional differential equation. SIAM J. Math. Anal. 23, 649–661 (1993)

    Article  Google Scholar 

  33. Pazy A.: Semigroups of Linear Operators and Application to Partial Differential Equations. Springer, Berlin (1983)

    Book  Google Scholar 

  34. Ricklefs R.E., Miller G.: Ecology. W.H. Freeman, (1999)

  35. Ruan, S.: Delay differential equations in single species dynamics. In: Delay Differential Equations and Applications (Marrakech, 2002), pp. 477–517. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 205. Springer, New York (2006)

  36. Seifert G.: On a delay differential equation for single specie population variations. Nonlinear Anal. 11, 1051–1059 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shi J., Shivaji R.: Persistence in reaction diffusion models with weak allee effect. J. Math. Biol. 52(6), 807–829 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Smith H.: An introduction to delay differential equations with applications to the life sciences. In: Texts in Applied Mathematics, vol. 57. Springer, New York (2011)

    Book  Google Scholar 

  39. Smoller J.: Shock Waves and Reaction-Diffusion Equations Grundlehren der Mathematischen Wissenschaften, vol. 258. Springer, New York (1983)

    Google Scholar 

  40. So J.W.-H., Yang Y.: Dirichlet problem for the diffusive Nicholson’s blowflies equation. J. Differ. Equ. 150, 317–348 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Su Y., Wei J., Shi J.: Bifurcation analysis in a delayed diffusive Nicholson’s blowflies equation. Nonlinear Anal. Real World Appl. 11, 1692–1703 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Su Y., Wei J., Shi J.: Hopf bifurcation in a reaction-diffusion population model with delay effect. J. Differ. Equ. 247, 1156–1184 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Travis C., Webb G.: Existence and stability for partial functional differential equations. Trans. Am. Math. Soc. 200, 395–418 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wu J.: Theory and Applications of Partial Functional-Differential Equations. Springer, New York (1996)

    Book  MATH  Google Scholar 

  45. Wu J.: Symmetric functional differential equations and neural networks with memory. Trans. Am. Math. Soc. 350, 4799–4838 (1998)

    Article  MATH  Google Scholar 

  46. Yan X., Li W.: Stability of bifurcating periodic solutions in a delayed reaction-diffusion population model. Nonlinearity 23, 1413–1431 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yoshida K.: The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology. Hiroshima Math. J. 12, 321–348 (1982)

    MathSciNet  MATH  Google Scholar 

  48. Zhou L., Tang Y., Hussein S.: Stability and Hopf bifurcation for a delay competition diffusion system. Chaos Solitons Fract. 14, 1201–1225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Y., Wei, J. & Shi, J. Hopf Bifurcation in a Diffusive Logistic Equation with Mixed Delayed and Instantaneous Density Dependence. J Dyn Diff Equat 24, 897–925 (2012). https://doi.org/10.1007/s10884-012-9268-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-012-9268-z

Keywords

Mathematics Subject Classification (2010)

Navigation