Journal of Dynamics and Differential Equations

, Volume 23, Issue 3, pp 475–494 | Cite as

Existence of Finite-Time Hyperbolic Trajectories for Planar Hamiltonian Flows

  • Luu Hoang DucEmail author
  • Stefan Siegmund


We present a shadowing theorem on the existence of hyperbolic trajectories on finite time intervals based on the EPH partition by George Haller and apply it to an example which is inspired by the problem of two-dimensional symmetric vortex merger.


EPH partition Finite time dynamics Vortex merger 

Mathematics Subject Classification (2000)

Primary 37B55 37D05 Secondary 37J20 76F20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berger A., Doan T.S., Siegmund S.: Nonautonomous finite-time dynamics. Discret. Contin. Dyn. Syst. 9, 463–492 (2008)zbMATHCrossRefGoogle Scholar
  2. 2.
    Berger A., Doan T.S., Siegmund S.: A remark on finite-time hyperbolicity. Proc. Appl. Math. Mech. 8, 10917–10918 (2008)CrossRefGoogle Scholar
  3. 3.
    Berger A., Doan T.S., Siegmund S.: A definition of spectrum for differential equations on finite time. J. Differ. Equ. 246, 1098–1118 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Branicki M., Wiggins S.: An adaptive method for computing invariant manifolds in non-autonomous, three-dimensional dynamical systems. Physica D 238, 1625–1657 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Chorin A., Marsden J.: A Mathematical Introduction to Fluid Mechanics, 3rd edn. Texts in Applied Mathematics. Springer, New York (1993)Google Scholar
  6. 6.
    Duc, L.H.: Asymptotic and finite-time dynamics for nonautonomous dynamical systems. Doctoral thesis, J.W. Goethe University Frankfurt (2006)Google Scholar
  7. 7.
    Duc L.H., Siegmund S.: Hyperbolicity and invariant manifolds for planar nonautonomous systems on finite time intervals. Int. J. Bifur. Chaos Appl. Sci. Eng. 3, 641–674 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hale J.: Ordinary Differential Equations. Krieger, Malabur (1980)zbMATHGoogle Scholar
  9. 9.
    Haller G.: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids 13, 3365–3385 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Haller G.: An objective definition of a vortex. J. Fluid Mech. 525, 1–26 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Haller G., Poje A.C.: Finite-time transport in aperiodic flows. Physica D 119, 352–380 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Ide K., Small D., Wiggins S.: Distinguished hyperbolic trajectories in time-dependent fluid flows: analytical and computational approach for velocity fields defined as data sets. Nonlinear Process. Geophys. 9, 237–263 (2002)CrossRefGoogle Scholar
  13. 13.
    Malhotra N., Wiggins S.: Geometric structures, lobe dynamics, and Lagrangian transport in flows with aperiodic time-dependence with applications to Rossby wave flow. J. Nonlinear Sci. 8, 401–456 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Okubo A.: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res. 17, 445–454 (1970)Google Scholar
  15. 15.
    Poje A.C., Haller G., Mezic I.: The geometry and statistics of mixing in aperiodic flows. Phys. Fluids 11, 2963–2968 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Trieling R.R., Velasco Fuentes O.U., van Heijst G.J.F.: Interaction of two unequal corotating vortices. Phys. Fluids 17, 087103-1–087103-17 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Velasco Fuentes O.U.: Chaotic advection by two interacting finite-area vortices. Phys. Fluids 27, 901–912 (2001)CrossRefGoogle Scholar
  18. 18.
    Velasco Fuentes O.U.: Vortex filmentation: its onset and its role on axisymmetrization and merger. Dyn Atmos Oceans 40, 23–42 (2005)CrossRefGoogle Scholar
  19. 19.
    Weiss J.: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D 48, 273–294 (1991)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of MathematicsCau Giay, HanoiVietnam
  2. 2.Department of MathematicsDresden University of TechnologyDresdenGermany

Personalised recommendations