Skip to main content
Log in

Resonance Tongues and Spectral Gaps in Quasi-Periodic Schrödinger Operators with One or More Frequencies. A Numerical Exploration

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this article we investigate numerically the spectrum of some representative examples of discrete one-dimensional Schrödinger operators with quasi-periodic potential in terms of a perturbative constant b and the spectral parameter a. Our examples include the well-known Almost Mathieu model, other trigonometric potentials with a single quasi-periodic frequency and generalisations with two and three frequencies. We computed numerically the rotation number and the Lyapunov exponent to detect open and collapsed gaps, resonance tongues and the measure of the spectrum. We found that the case with one frequency was significantly different from the case of several frequencies because the latter has all gaps collapsed for a sufficiently large value of the perturbative constant and thus the spectrum is a single spectral band with positive Lyapunov exponent. In contrast, in the cases with one frequency considered, gaps are always dense in the spectrum, although some gaps may collapse either for a single value of the perturbative constant or for a range of values. In all cases we found that there is a curve in the (a, b)-plane which separates the regions where the Lyapunov exponent is zero in the spectrum and where it is positive. Along this curve, which is b = 2 in the Almost Mathieu case, the measure of the spectrum is zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Avila, A.: Global theory of one-frequency Schrödinger operators I: stratified analyticity of the Lyapunov exponent and the boundary of nonuniform hyperbolicity. Arxiv preprint arXiv:0905.3902 (2009)

    Google Scholar 

  2. Avila A., Bochi J., Damanik D.: Cantor spectrum for Schrödinger operators with potentials arising from generalized skew-shifts. Duke Math. J. 146(2), 253–280 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avila A., Jitomirskaya S.: The ten martini problem. Ann. Math. 170(1), 303–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Avila A., Jitomirskaya S.: Almost localization and almost reducibility. J. Eur. Math. Soc. 12(1), 93–131 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Avila A., Krikorian R.: Reducibility or non-uniform hyperbolicity for quasiperiodic Schrödinger cocycles. Ann. Math. 164(3), 249–294 (2006)

    MathSciNet  Google Scholar 

  6. Bjerklöv K.: Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations. Ergod. Theory Dyn. Syst. 25(4), 1015–1045 (2005)

    Article  MATH  Google Scholar 

  7. Bjerklöv K.: Positive Lyapunov exponents for continuous quasiperiodic Schrödinger equations. J. Math. Phys. 47, 022702 (2006)

    Article  MathSciNet  Google Scholar 

  8. Bogoljubov N., Mitropoliskii J.A., Samoĭlenko A.M.: Methods of accelerated convergence in nonlinear mechanics. Hindustan Publishing Corp., Delhi (1976)

    Google Scholar 

  9. Broer H.W., Puig J., Simó C.: Resonance tongues and instability pockets in the quasi-periodic Hill–Schrödinger equation. Comm. Math. Phys. 241(2–3), 467–503 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Broer H.W., Simó C.: Hill’s equation with quasi-periodic forcing: resonance tongues, instability pockets and global phenomena. Bol. Soc. Brasil. Mat. (N.S.) 29(2), 253–293 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Broer H.W., Simó C.: Resonance tongues in Hill’s equations: a geometric approach. J. Differ. Equ. 166(2), 290–327 (2000)

    Article  MATH  Google Scholar 

  12. Choi M.D., Elliott G.A., Yui N.: Gauss polynomials and the rotation algebra. Invent. Math. 99(2), 225–246 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chulaevsky V.A., Sinaĭ Ya.G.: Anderson localization for the 1-D discrete Schrödinger operator with two-frequency potential. Comm. Math. Phys. 125(1), 91–112 (1989)

    Article  MathSciNet  Google Scholar 

  14. Cong N.D., Fabbri R.: On the spectrum of the one-dimensional Schrödinger operator. Discret Contin. Dyn. Syst. Ser. B 9(3-4), 541–554 (2008)

    MATH  Google Scholar 

  15. De Concini C., Johnson R.A.: The algebraic-geometric AKNS potentials. Ergod. Theory Dyn. Syst. 7(1), 1–24 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Delyon F., Souillard B.: The rotation number for finite difference operators and its properties. Comm. Math. Phys. 89(3), 415–426 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dieci L., Van Vleck E.S.: On the error in computing Lyapunov exponents by QR Methods. Numer. Math. 101, 619–642 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eliasson L.H.: Floquet solutions for the one-dimensional quasi-periodic Schrödinger equation. Comm. Math. Phys. 146, 447–482 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Eliasson L.H.: Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum. Acta Math. 179(2), 153–196 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fabbri R., Johnson R.A., Pavani R.: On the nature of the spectrum of the quasi-periodic Schrödinger operator. Nonlin. Anal. Real World Appl. 3(1), 37–59 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Figueras, J.L., Haro, À.: Computer assisted proofs of existence of fiberwise hyperbolic invariant tori in skew products over rotations. Submitted to SIAM J. Appl. Dyn. Syst. (2010)

  22. Fröhlich J., Spencer T., Wittwer P.: Localization for a class of one-dimensional quasi-periodic Schrödinger operators. Comm. Math. Phys. 132(1), 5–25 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Goldstein M., Schlag W.: Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues. Geom. Funct. Anal. 18(3), 755–869 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hadj Amor S.: Hölder continuity of the rotation number for quasi-periodic co-cycles. Comm. Math. Phys. 287(2), 565–588 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Haro, À., Puig, J.: Aubry duality for quasi-periodic potentials: Lyapunov exponents and Cantor spectrum. In preparation (2010)

  26. Herman M.R.: Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2. Comment. Math. Helvetici 58(3), 453–502 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jitomirskaya, S.: Ergodic Schrödinger operators (on one foot). Gesztesy, F. et al. (eds.) Spectral Theory and Mathematical Physics. A Festschrift in Honor of Barry Simon’s 60th birthday. Ergodic Schrödinger Operators, Singular Spectrum, Orthogonal Polynomials, and Inverse Spectral Theory. Based on the SimonFest conference, Pasadena, CA, 27–31 Mar 2006. Proceedings of Symposia in Pure Mathematics 76, Pt. 2, 613–647. American Mathematical Society (AMS), Providence, RI (2007)

  28. Johnson R.A.: Cantor spectrum for the quasi-periodic Schrödinger equation. J. Diff. Equ. 91, 88–110 (1991)

    Article  MATH  Google Scholar 

  29. Johnson R.A., Moser J.: The rotation number for almost periodic potentials. Commun. Math. Phys. 84, 403–438 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jorba À., Simó C.: On the reducibility of linear differential equations with quasiperiodic coefficients. J. Differ. Equ. 98(1), 111–124 (1992)

    Article  MATH  Google Scholar 

  31. Kingman J.F.C.: The ergodic theory of subadditive stochastic processes. J. Roy. Statist. Soc. Ser. B 30, 499–510 (1968)

    MathSciNet  MATH  Google Scholar 

  32. Ledrappier F., Shub M., Simó C., Wilkinson A.: Random versus deterministic exponents in a rich family of diffeomorphisms. J. Stat. Phys. 113, 85–149 (2003)

    Article  MATH  Google Scholar 

  33. Magnus, W., Winkler, S.: Hill’s Equation. Dover Publications Inc., New York, Corrected reprint of the 1966 edition (1979)

  34. Moser J., Pöschel J.: An extension of a result by Dinaburg and Sinai on quasi-periodic potentials. Comment. Math. Helvetici 59, 39–85 (1984)

    Article  MATH  Google Scholar 

  35. Puig J.: Cantor spectrum for the Almost Mathieu operator. Comm. Math. Phys. 244(2), 297–309 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Puig J.: A nonperturbative Eliasson’s reducibility theorem. Nonlinearity 19(2), 355–376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Puig J., Simó C.: Analytic families of reducible linear quasi-periodic differential equations. Ergod. Theory Dyn. Syst. 26(2), 481–524 (2006)

    Article  MATH  Google Scholar 

  38. Puig J., Simó C.: Resonance tongues in the quasi-periodic Hill–Schrödinger equation with three frequencies. Regul. Chaot. Dyn. 16(1–2), 62–79 (2011)

    Google Scholar 

  39. Sacker R.J., Sell G.R.: A spectral theory for linear differential systems. J. Diff. Equ. 27, 320–358 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sánchez J., Net M., Simó C.: Computation of invariant tori by Newton–Krylov methods in large-scale dissipative systems. Physica D 239, 123–133 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Simó, C.: Some properties of the global behaviour of conservative low dimensional systems. In: Foundations of Computational Mathematics: Hong Kong 2008, London Math. Soc. Lecture Note Ser., vol. 363, pp. 163–189. Cambridge University Press, Cambridge (2009)

  42. Sinai Ya.G.: Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J. Stat. Phys. 46(5–6), 861–909 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquim Puig.

Additional information

To Prof. Russell Johnson in his 60th anniversary, with a deep appreciation for his outstanding works.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puig, J., Simó, C. Resonance Tongues and Spectral Gaps in Quasi-Periodic Schrödinger Operators with One or More Frequencies. A Numerical Exploration. J Dyn Diff Equat 23, 649–669 (2011). https://doi.org/10.1007/s10884-010-9199-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-010-9199-5

Keywords

Mathematics Subject Classification (2000)

Navigation