Skip to main content

Advertisement

Log in

Transmission Dynamics of an Influenza Model with Age of Infection and Antiviral Treatment

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Age of infection (the time lapsed since infection) is an important factor to consider when modeling the transmission dynamics of influenza under the influence of antiviral treatment and drug-resistance. In this paper, we consider an influenza model which includes an age of infection. The model includes partial differential equations (PDEs) in order to describe the variable infectiousness and effect of antivirals during the infectious period. We derived the formulas for various reproduction numbers (RN) including \({\mathcal R_{SC}}\) (the controlled RN by one sensitive case), \({\mathcal R_{TC}}\) (the controlled total RN by one sensitive case), and \({\mathcal R_R}\) (the RN by one resistant case). The model analysis shows that \({\mathcal R_{SC}}\) and \({\mathcal R_R}\) determine both the global stability of the disease free equilibrium and the existence of the non-trivial equilibria. Local stabilities of the non-trivial equilibria are also discussed. Numerical simulations are conducted to not only confirm or extend the analytic results on qualitative behaviors of the system, but also reveal important quantitative properties of the disease dynamics influenced by antiviral treatment. These results are then used to assess the effectiveness of treatment programs in terms of both the RNs and the epidemic size. Our findings illustrate possibility that a higher level of antiviral use may lead to an increase of the epidemic size, despite the fact that there is a fitness cost of the drug-resistant strains. This suggests that programs for antiviral use should be designed carefully to avoid the adverse effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Earn D.J.D., Dushoff J., Levin S.A.: Ecology and evolution of the flu. Trends Ecol. Evol. 17, 334–340 (2002)

    Article  Google Scholar 

  2. Oxford J.S.: Influenza A pandemics of the 20th century with special reference to 1918: virology, pathology and epidemiology. Rev. Med. Virol. 10, 119–133 (2000)

    Article  Google Scholar 

  3. Meltzer M.I., Cox N.J., Fukuda K.: The economic impact of pandemic influenza in the United States: priorities for intervention. Emerg. Infect. Dis. 5, 659–671 (1999)

    Article  Google Scholar 

  4. Longini I.M. Jr, Nizanm A., Xu S., Ungchusak K., Hanshaoworakul W., Cummings D.A.T., Halloran M.E.: Containing pandemic influenza at the source. Science 309, 1083–1087 (2005)

    Article  Google Scholar 

  5. Chan, M.: World now at the start of 2009 influenza pandemic. World Health Organization (2009-06-11)

  6. Anderson R.M., May R.M.: Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford (1991)

    Google Scholar 

  7. Alexander M.E., Bowman C.S., Feng Z., Gardam M., Moghadas S.M., Röst G., Wu J., Yan P.: Emergence of drug resistance: implications for antiviral control of pandemic influenza. Proc. R. Soc. B 274, 1675–1684 (2007)

    Article  Google Scholar 

  8. Alexander M.E., Moghadas S.M., Röst G., Wu J.: A delay differential model for pandemic influenza with antiviral treatment. Bull. Math. Biol. 70, 382–397 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lipsitch M., Cohen T., Murray M., Levin B.R.: Antiviral resistance and the control of pandemic influenza. PLoS Med. 4, 0111–0120 (2007)

    Article  Google Scholar 

  10. Regoes R.R., Bonhoeffer S.: Emergence of drug-resistant influenza virus: population dynamical considerations. Science 312, 389–391 (2006)

    Article  Google Scholar 

  11. Qiu Z., Feng Z.: Transmission dynamics of an influenza model with vaccintaion and antiviral treatment. Bull. Math. Biol. 72, 1–33 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Feng Z., Xu D., Zhao H.: Epidemiological models with non-exponentially distributed disease stages and applications to disease control. Bull. Math. Biol. 69, 1511–1536 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lloyd A.L.: Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods. Proc. Roy. Soc. Lond. B 268, 985–993 (2001)

    Article  Google Scholar 

  14. Wearing H.J., Rohani P., Keeling M.J.: Appropriate models from the management of infectious diseases. PLoS Med. 7, 621–627 (2005)

    Google Scholar 

  15. Yan, P., Feng, Z.: Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness. Math. Biosci. (2010). doi:10.1016/j.mbs.2009.12.007

  16. Yang C.K., Brauer F.: Calculation of R 0 for age-of-infection models. Math. Biosci. Eng. 5(3), 585–599 (2008)

    MATH  MathSciNet  Google Scholar 

  17. Kermack W.O., McKendrick A.G.: A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. Lond. A 115, 700–721 (1927)

    Article  Google Scholar 

  18. Thieme H.R., Castillo-Chavez C.: How may infection-age-dependent infectivity affect the dynamics if HIV/AIDs? SIAM J. Appl. Math. 53, 1447–1479 (1993)

    Article  MathSciNet  Google Scholar 

  19. Milner F.A., Pugliese A.: Periodic solutions: a robust numerical method for an SIR model of epidemics. J. Math. Biol. 39, 471–492 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lloyd A.L.: Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics. Theor. Popul. Biol. 60, 59–71 (2001)

    Article  Google Scholar 

  21. Feng Z., Iannelli M., Milner F.A.: A two-strain tuberculosis model with age of infection. SIAM J. Appl. Math. 62, 1634–1656 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Feng Z., Li C.C., Milner F.A.: Schistosomiasis models with density dependence and age of infection in snail dynamics. Math. Biosci. 177&178, 271–286 (2002)

    Article  MathSciNet  Google Scholar 

  23. Li J., Zhou Y., Ma Z., Hyman J.M.: Epidemiological models for mutanting pathogens. SIAM J. Appl. Math. 65, 1–23 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hyman J.M., Li J.: Infection-age structured epidemic models with behavior change or treatment. J. Biol. Dyns. 1, 109–131 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Iannelli, M.: Mathematical Theory of Age-structured Population Dynamics. Applied Mathematics Monographs 7, comitato nazionale per le scienze matematiche, Consiglio Nazionale delle Ricerche (C. N. R), Giardini, Pisa (1995)

  26. Webb G.: Theory of nonlinear age-dependent population dynamics. Marcel Dekker, New York (1985)

    MATH  Google Scholar 

  27. Diekmann O., Heesterbeek J.A.P.: Mathematical epidemiology of infections disease: model building, analysis and interpretation. Wiley, New York (2000)

    Google Scholar 

  28. Mills C.E., Robins J.M., Lipsitich M.: Transmissibility of 1918 influenza. Nature 432, 904–906 (2004)

    Article  Google Scholar 

  29. Rong L.B., Feng Z., Perelson A.S.: Mathematical analysis of age-structured HIV-1 dynamics with conbination antiviral theraphy. SIAM J. Appl. Math. 67, 731–756 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Iwami S., Suzuki T., Takeuchi Y.: Paradox of vaccination: is vaccination really effective against avian flu epidemics? PLoS ONE 4, e4915 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipeng Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, Z., Feng, Z. Transmission Dynamics of an Influenza Model with Age of Infection and Antiviral Treatment. J Dyn Diff Equat 22, 823–851 (2010). https://doi.org/10.1007/s10884-010-9178-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-010-9178-x

Keywords

Mathematics Subject Classification (2000)

Navigation